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Abstract. This paper will present the final hardware realization of a new family 
of programmable devices that has specifically being conceived in order to ad-
dress the prototyping of bio-inspired principles. The devices are organized 
around a custom 32-bit RISC microprocessor and a custom FPGA. The internal 
architecture devised for the devices is scalable, so that it is possible to construct 
a physical hardware platform whose size matches the requirements of the appli-
cation to be handled. To facilitate the development of applications for this 
hardware platform a complete set of design tools has been developed. 

1   Introduction 

During the last years standard programmable devices have been extensively used to 
provide physical implementations for bio-inspired principles, either as a direct sub-
strate [1] or as a supporting platform for extended architectures [2], [3], [4]. Even 
some custom programmable architectures [5], [6] have been developed in order to 
provide an efficient substrate for the realization of these principles. However, there is 
still a lack of an integrated system able to offer at the same time the basic features 
required to implement actual autonomous bio-inspired hardware: 

• Partial dynamic reconfiguration, i.e., the ability to modify the functionality of a 
section of the design while it is in normal operation and with a delay compara-
ble to the execution delay of the system. Even if this capability is being offered 
by the programmable devices offered by Xilinx [7] and Atmel [8] it is usually 
limited by the lack of information about the physical configuration string or by 
the granularity of the reconfiguration area. 

• Self-configuration, i.e., the capability of the programmable device of modify-
ing its functionality using its own resources. This feature is already present in 
the Cell Matrix devices [5]. 

• Dynamic routing, i.e., the possibility of changing in real time the connectivity 
between the elementary programmable cells included in the system without the 
need for an external compiler. 

The main goal of the POEtic project [9] was the development of a flexible hard-
ware substrate able to provide capabilities similar to those present in living beings, 
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like evolution, development, self-replication, self-repair and learning. One of the 
major outcomes of the project was an integrated programmable electronic system, the 
POEtic chip, that provides in a single device the three features mentioned above: 
partial dynamic reconfiguration, self-configuration and dynamic routing. We shall 
demonstrate that the combination of these capabilities in a single hardware substrate 
provides an efficient platform for the prototyping and development of artifacts based 
on bio-inspired principles. 

The rest of the paper is organized as follows: in the next section we shall present 
the major features included in the architecture conceived for the POEtic devices. Then 
we shall review the actual physical implementation of the device and the development 
environment that has been built around it. Finally, the conclusions and our current 
work will be outlined. 

2   The POEtic Architecture 

The structural organization of a POEtic chip is represented in Fig. 1. 
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Fig. 1. Organization of the POEtic chip 

As it can be deduced from this figure, a POEtic chip is constituted by three main 
building blocks: 

• Environment subsystem: This is the component of the tissue that is in 
charge of managing the interaction with the environment. This interaction 
can be considered at two different time scales: on-line interaction and evolu-
tion (phylogenesis). The on-line interaction refers to the continuous process 
by means of which a given individual implemented in the tissue is sensitive 
to the input stimuli that arrive from the external environment. These stimuli 
may take the form of any physical magnitude (light, pressure, temperature, 
…), and after a conditioning and conversion processes are translated into in-
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ternal signals that may be used by the individual either to extract some 
knowledge from the environment or to produce an output as a result of some 
internal processing. These output signals may be later translated, by means of 
a set of proper actuators, into physical magnitudes that are reverted as output 
actions to the environment. This on-line interaction constitutes the basic sen-
sor-actuator loop that permits a given individual to adapt its behaviour to the 
specific characteristics of the environment where it is placed. The second 
kind of interaction with the environment acts at a population level and ex-
ceeds the life time of an individual. In this case the sensor-actuator loop is 
used to define the basic substrate (the genome) of the individuals that are ca-
pable of adapting its behaviour to the environment in the most efficient way 
according to a given fitness measure. 

• Organic subsystem: It is in charge of implementing the behaviour of an indi-
vidual, following the principles described by the innate information that has re-
sulted from the evolutionary process. Therefore, it is the goal of this system to 
permit the development (ontogenesis) of a given functionality from the infor-
mation stored in a genome, and also to permit the adaptation (epigenesis) of 
this functionality according to the stimuli received from the environment. 

• System interface: This element will allow for an efficient communication be-
tween the environment and the organic subsystem of the tissue. It also consti-
tutes the substrate that will provide the basic mechanisms that will permit the 
scalability of the tissue. 

2.1   The Environment Subsystem and System Interface 

The environment subsystem of the POEtic tissue has been built around a custom 32-
bit microprocessor with an efficient and flexible system bus, based on the AMBA 
specification [10], and several custom peripherals. The reason for using a centralised 
system to carry out evolutionary processes is motivated by the fact that, even if evolu-
tion acts on a population of individuals, at the end there must be a global unit that 
should evaluate the fitness of the individuals and determine those from which the next 
population has to be constructed. Therefore, the functionality of the individuals will 
be implemented in the organic subsystem, but it is the microprocessor that constitutes 
the core of the environment subsystem that will drive the basic steps of the evolution-
ary process, as well as the interaction of the individuals with the environment. Addi-
tionally, the use of a programmable unit to implement the phylogenetic mechanisms 
of the tissue will permit to test and develop different evolutionary strategies, since this 
will imply just an update of the software executed by the microprocessor. Finally, this 
alternative will largely simplify the management of the acquisition/conversion units 
that are required to handle the sensor-actuator loop needed to complete the epigenetic 
and phylogenetic processes to be implemented by the tissue. 

The system interface of the Poetic device plays a major role in allowing for its 
scalability features. This means that it is possible to connect several POEtic chips in 
order to construct an electronic tissue whose size can be accommodated to the actual 
needs of a given application without posing specific constraints neither on the system 
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architecture nor in the connectivity pattern among the POEtic chips that constitute the 
tissue. 

In this way, a POEtic tissue can be constructed as a bidimensional array constituted 
by POEtic chips. The connectivity between these chips is based on two different 
buses, named organic (O) and interface (I) buses. The signals that constitute the or-
ganic bus permit to communicate (at a cellular level) the organic subsystems present 
in every POEtic chip. The interface bus carries those signals that permit to handle the 
collection of POEtic chips as a single tissue, so that from a user point of view the 
tissue has only one environment subsystem and one organic subsystem. This is repre-
sented in Fig. 2. 
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Fig. 2. Scalability properties of the POEtic tissue 

2.2   The Organic Subsystem 

The organic subsystem of the POEtic device is made up of 2 layers, as depicted in 
Fig. 3: a two-dimensional array of basic elements, called molecules, and a two-
dimensional array of routing units. Each molecule is connected to its four neighbours 
in a regular structure. Mainly containing a 16-bit look-up table (LUT) and a flip-flop 
(DFF), it has the capability of accessing the routing layer that is used for inter-cellular 
communication. This second layer implements a dynamic routing algorithm allowing 
the creation of data paths between cells at runtime. 

A molecule has eight different operational modes, to speed up some operations, 
and to use the routing plane.  

• In 4-LUT mode, the 16-bit LUT supplies an output, depending on its four 
inputs. 

• In 3-LUT mode, the LUT is split into two 8-bit LUTs, both supplying a re-
sult depending on three inputs. The first result can go through the flip-flop, 
and is the first output. The second one can be used as a second output, and is 
directly sent to the south neighbor (can serve as a carry in parallel opera-
tions). 
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Fig. 3. Organization of the organic subsystem 

• In Comm mode, the LUT is split into one 8-bit LUT, and one 8-bit shift reg-
ister. This mode could be used to compare a serial input data with a data 
stored in the 8-bit shift register. 

• In Shift Memory mode, the 16 bits are used as a shift register, in order to 
store data, for example a genome. One input controls the shift, and another 
one is the input of the shift memory. 

• In Input mode, the molecule is a cellular input, connected to the inter-
cellular routing plane.  

• In Output mode, the molecule is a cellular output, connected to the inter-
cellular routing plane. 

• In Trigger mode, the 16-bit shift register should contain "000...01" for a 16-
bit identifier system. It is used by the routing plane to synchronize the identi-
fier decoding during the routing process.  

• In Configure mode, the molecule can partially configure its neighborhood. 
One input is the configuration control signal, and another one is the configu-
ration shifting to the neighbors. 

The configuration of the device can be made in a parallel manner, through a 32-bit 
bus. The 76 configuration bits of a molecule are split into three 32-bit words. Addi-
tionally, the configuration system of the molecules can be seen as a shift register of 76 
bits split into 5 blocks: the LUT, the selection of the LUT’s input, the switch box, the 
mode of operation, and an extra block for all other configuration bits. Each block 
contains, as shown in Fig. 4, together with its configuration, one bit indicating, in case 
of a reconfiguration coming from a neighbour, if the block has to be bypassed. This 
bit can only be loaded from the microprocessor. 

The special configure mode allows a molecule to partially reconfigure its 
neighbourhood. It sends bits coming from another molecule to the configuration of 
one of its neighbours. By chaining the configurations of neighbouring molecules, it is  
 



182 J.M. Moreno, Y. Thoma, and E. Sanchez 

 

Fig. 4. Organization of the configuration bits for partial reconfiguration 

possible to modify multiple molecules at the same time, allowing, for example, the 
synaptic weights in a neuron to be changed. Moreover, this mechanism permits to 
use up to 54 of the configuration bits to store information, that can be accessed 
serially. 

2.3   Dynamic Routing 

The dynamic routing system is designed to automatically connect the cells’ inputs and 
outputs. Each output of a cell has a unique identifier. For each of its inputs, the cell 
stores the identifier of the source from which it needs information. A non-connected 
input (target) or output (source) can initiate the creation of a path by broadcasting its 
identifier, in case of an output, or the identifier of its source, in case of an input. The 
path is then created using a parallel implementation of the breadth-first search algo-
rithm. When all paths have been created, the organism can start operation, and exe-
cute its task, until a new routing is launched, for example after a cell addition or a 
cellular self-repair. 

Our approach has many advantages, compared to a static routing process. First of 
all, a software implementation of a shortest path algorithm, such as Lee’s [11], is very 
time-consuming for a processor, while our parallel implementation requires a very 
small number of clock cycles to finalize a path. Secondly, when a new cell is created 
it can start a routing process, without the need of recalculating all paths already cre-
ated. Thirdly, a cell has the possibility of restarting the routing process of the entire 
organism, if needed (for instance after a self-repair). Finally, our approach is totally 
distributed, without any global control over the routing process, so that the algorithm 
can work without the need of the central micro-processor. 

The routing algorithm is executed in four phases:  

Phase 1: Finding a Master  
In this phase, every target or source that wants to and is not connected to its corre-
spondent partner tries to become master of the routing process. A simple priority 
mechanism chooses the most bottom-left routing unit to be the master, as shown in 
Fig. 5. Note that there is no global control for this priority, every routing unit knowing 
whether or not it is the master. This phase is over in one clock cycle, as the propaga-
tion of signals is combinational. 
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Fig. 5. Three consecutive steps of the routing algorithm. The black routing unit will be the 
master, and therefore will perform its routing. 

Phase 2: Broadcasting the Address  
Once a master has been selected, it sends its address in case of a source, or the address 
of the needed source in case of a target. It is sent serially, in n clock cycles, where n 
is the size of the address. The same path as in the first phase is used to broadcast the 
address, as shown in Fig. 6. 

 

Fig. 6. The propagation direction of the address: north → south | east → south, west, and north | 
south → north | west → north, east, and south | routing unit → north, east, south, and west 

Every routing unit, except the one that sends the address, compares the incoming 
value with its own address (stored in the molecule underneath). At the end of this 
phase, that is, after n clock cycles, each routing unit knows if it is involved in this 
path. In practice, there has to be one and only one source, and at least one target. 

Phase 3: Eliminating sources and targets  
In some situations, a source should start a routing process, for instance, in a devel-
opmental process. In such a process, it would be useful to have many sources and 
targets with the same ID. So at this stage, it is possible there is more than one 
source involved in the routing process. In order to avoid multiple sources, in this 
phase that lasts only one clock cycle, if a source is at the origin of the routing proc-
ess, it sends a signal to every other routing unit, to let them know a source is at the 
origin. Then every other source with the same ID disabled its participation in the 
current process. 

The same disable is performed in case a target launched the routing process. 
Every target that is not the master disables its participation to the current process, to 
ensure that the target that started the process will be the only one connected to a 
source.  

Phase 4: Building the Shortest Path  
The last phase, largely inspired by [12], creates a shortest path between the selected 
source and the selected targets. An example involving 8 sources and 8 targets is 
shown in Fig. 7, for a densely connected network. 



184 J.M. Moreno, Y. Thoma, and E. Sanchez 

 

Fig. 7. Test case with a densely connected network 

A parallel implementation of the breadth-first search algorithm allows the routing 
units to find the shortest path between a source and many targets. Starting from the 
source, an expansion process tries to find targets. When one is reached, the path is 
fixed, and all the routing resources used for the path will not be available for the next 
successive iterations of the algorithm. 

3   Physical Realization 

The POEtic chip has been implemented and fabricated as an ASIC of 54 mm2 using a 
0.35 µm CMOS process. The chip, whose layout is depicted in Fig. 8, contains 144 
molecules organized as an 8x18 array and the complete environment subsystem ex-
plained previously. Even if implemented using a standard technology the ASIC im-
plementation of the POEtic tissue demonstrates its superior integration capabilities 
when compared with those offered by standard prototyping platforms (the prototyping 
experiments performed within the framework of the project show that an FPGA with 
3 million system gates capacity is able to implement the functionality of just 80 PO-
Etic molecules). 

Specific development boards have been constructed in order to test the POEtic de-
vices and to implement practical applications on them. These are depicted in Fig. 9. 
Fig. 9(a) represents the master board, containing one POEtic chip, Flash and SDRAM 
memory blocks and a USB communication unit that permits to create an interface 
with an external host. Fig. 9(b) depicts the slave board, containing a 2 x 2 array of 
POEtic chips. The slave board can be attached to the master board, and it is also pos-
sible to connect several slave boards between them in order to create an electronic 
tissue with the required size for the application to be handled. 

Since the complete POEtic tissue has been specified and developed using a stan-
dard hardware description language (VHDL) it can be implemented in a standard 
prototyping platform (though with limited functionality due to the capacity restric-
tions of current programmable devices). Therefore, in order to facilitate the 
 



 POEtic: A Prototyping Platform for Bio-inspired Hardware 185 

 

Fig. 8. Layout of the POEtic chip 

 

Fig. 9. Details of (a) the master and (b) slave boards developed for the POEtic devices 

use of the tissue by external users a complete set of tools have been developed within 
the framework of the project. This set includes a schematic editor and synthesizer, a 
molecule-level design entry and simulation tool for the organic subsystem, a C com-
piler and an assembler integrated in a graphical user interface with language-sensitive 
editing capabilities, a graphical user interface for the simulation of programs devel-
oped for the microprocessor and a system debugger. 



186 J.M. Moreno, Y. Thoma, and E. Sanchez 

4   Conclusions 

The POEtic project has produced at its end the first programmable integrated system 
with capabilities inspired in the organization principles present in living beings: evo-
lution, development/growth, self-replication, self-repair and learning. The resulting 
electronic device permits to construct a multi-cellular tissue whose size can be 
adapted to the specific requirements of the application to be handled. The internal 
architecture of the device includes features, like dynamic partial reconfiguration, self-
configuration or in-hardware dynamic routing, that were never combined (if not pre-
sent at all) in any past electronic device. 

In this paper we have presented the architecture that has been conceived for the 
POEtic devices, as well as the internal organization of its main constituent elements. 
Then the physical implementation details of the integrated systems and the develop-
ment boards constructed to create applications based on these devices. The whole 
system has been described and developed using a standard hardware description lan-
guage (VHDL). This, together with the set of tools that have been developed for the 
devices, will permit to test the concepts developed within the project using standard 
prototyping platforms. 

The availability of this brand new family of programmable devices thus opens long 
term opportunities for the implementation of electronic systems and applications able 
to take profit of these new features. Among them we could consider the following list: 

• Autonomous adaptive systems for deep space exploration. 
• Safety critical systems in the aeronautics and the automotive domains. 
• Sensor integration for distributed, highly immersive sensor and actuator en-

vironments. 
• Personalized, user-adaptable assistant systems. 
• User-adaptable monitoring and early warning systems for handicapped or 

elderly people. 

Our current work is concentrated in the prototyping of large-scale spiking neural 
networks models with bio-inspired learning mechanisms using the prototyping plat-
form offered by the POEtic devices. 
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