
J. M. Moreno, J. Madrenas, and J. Cosp (Eds.): ICES 2005, LNCS 3637, pp. 177 – 187, 2005.
© Springer-Verlag Berlin Heidelberg 2005

POEtic: A Prototyping Platform
for Bio-inspired Hardware

J. Manuel Moreno1, Yann Thoma2, and Eduardo Sanchez2

1 Technical University of Catalunya, Dept. of Electronic Engineering,
Campus Nord, Building C4, c/Jordi Girona 1-3, 08034-Barcelona, Spain

moreno@eel.upc.edu
2 Swiss Federal Institute of Technology Lausanne, Logic Systems Laboratory,

IN-Ecublens, CH-1015, Switzerland
{Yann.Thoma, Eduardo.Sanchez}@epfl.ch

Abstract. This paper will present the final hardware realization of a new family
of programmable devices that has specifically being conceived in order to ad-
dress the prototyping of bio-inspired principles. The devices are organized
around a custom 32-bit RISC microprocessor and a custom FPGA. The internal
architecture devised for the devices is scalable, so that it is possible to construct
a physical hardware platform whose size matches the requirements of the appli-
cation to be handled. To facilitate the development of applications for this
hardware platform a complete set of design tools has been developed.

1 Introduction

During the last years standard programmable devices have been extensively used to
provide physical implementations for bio-inspired principles, either as a direct sub-
strate [1] or as a supporting platform for extended architectures [2], [3], [4]. Even
some custom programmable architectures [5], [6] have been developed in order to
provide an efficient substrate for the realization of these principles. However, there is
still a lack of an integrated system able to offer at the same time the basic features
required to implement actual autonomous bio-inspired hardware:

• Partial dynamic reconfiguration, i.e., the ability to modify the functionality of a
section of the design while it is in normal operation and with a delay compara-
ble to the execution delay of the system. Even if this capability is being offered
by the programmable devices offered by Xilinx [7] and Atmel [8] it is usually
limited by the lack of information about the physical configuration string or by
the granularity of the reconfiguration area.

• Self-configuration, i.e., the capability of the programmable device of modify-
ing its functionality using its own resources. This feature is already present in
the Cell Matrix devices [5].

• Dynamic routing, i.e., the possibility of changing in real time the connectivity
between the elementary programmable cells included in the system without the
need for an external compiler.

The main goal of the POEtic project [9] was the development of a flexible hard-
ware substrate able to provide capabilities similar to those present in living beings,

178 J.M. Moreno, Y. Thoma, and E. Sanchez

like evolution, development, self-replication, self-repair and learning. One of the
major outcomes of the project was an integrated programmable electronic system, the
POEtic chip, that provides in a single device the three features mentioned above:
partial dynamic reconfiguration, self-configuration and dynamic routing. We shall
demonstrate that the combination of these capabilities in a single hardware substrate
provides an efficient platform for the prototyping and development of artifacts based
on bio-inspired principles.

The rest of the paper is organized as follows: in the next section we shall present
the major features included in the architecture conceived for the POEtic devices. Then
we shall review the actual physical implementation of the device and the development
environment that has been built around it. Finally, the conclusions and our current
work will be outlined.

2 The POEtic Architecture

The structural organization of a POEtic chip is represented in Fig. 1.

Environment
subsystem
Environment
subsystem

System
interface
System
interface

Organic
subsystem
Organic

subsystem
O

I

to other POEtic chips

to other POEtic chips

sensors

actuators

system bus

POEtic chip

Fig. 1. Organization of the POEtic chip

As it can be deduced from this figure, a POEtic chip is constituted by three main
building blocks:

• Environment subsystem: This is the component of the tissue that is in
charge of managing the interaction with the environment. This interaction
can be considered at two different time scales: on-line interaction and evolu-
tion (phylogenesis). The on-line interaction refers to the continuous process
by means of which a given individual implemented in the tissue is sensitive
to the input stimuli that arrive from the external environment. These stimuli
may take the form of any physical magnitude (light, pressure, temperature,
…), and after a conditioning and conversion processes are translated into in-

 POEtic: A Prototyping Platform for Bio-inspired Hardware 179

ternal signals that may be used by the individual either to extract some
knowledge from the environment or to produce an output as a result of some
internal processing. These output signals may be later translated, by means of
a set of proper actuators, into physical magnitudes that are reverted as output
actions to the environment. This on-line interaction constitutes the basic sen-
sor-actuator loop that permits a given individual to adapt its behaviour to the
specific characteristics of the environment where it is placed. The second
kind of interaction with the environment acts at a population level and ex-
ceeds the life time of an individual. In this case the sensor-actuator loop is
used to define the basic substrate (the genome) of the individuals that are ca-
pable of adapting its behaviour to the environment in the most efficient way
according to a given fitness measure.

• Organic subsystem: It is in charge of implementing the behaviour of an indi-
vidual, following the principles described by the innate information that has re-
sulted from the evolutionary process. Therefore, it is the goal of this system to
permit the development (ontogenesis) of a given functionality from the infor-
mation stored in a genome, and also to permit the adaptation (epigenesis) of
this functionality according to the stimuli received from the environment.

• System interface: This element will allow for an efficient communication be-
tween the environment and the organic subsystem of the tissue. It also consti-
tutes the substrate that will provide the basic mechanisms that will permit the
scalability of the tissue.

2.1 The Environment Subsystem and System Interface

The environment subsystem of the POEtic tissue has been built around a custom 32-
bit microprocessor with an efficient and flexible system bus, based on the AMBA
specification [10], and several custom peripherals. The reason for using a centralised
system to carry out evolutionary processes is motivated by the fact that, even if evolu-
tion acts on a population of individuals, at the end there must be a global unit that
should evaluate the fitness of the individuals and determine those from which the next
population has to be constructed. Therefore, the functionality of the individuals will
be implemented in the organic subsystem, but it is the microprocessor that constitutes
the core of the environment subsystem that will drive the basic steps of the evolution-
ary process, as well as the interaction of the individuals with the environment. Addi-
tionally, the use of a programmable unit to implement the phylogenetic mechanisms
of the tissue will permit to test and develop different evolutionary strategies, since this
will imply just an update of the software executed by the microprocessor. Finally, this
alternative will largely simplify the management of the acquisition/conversion units
that are required to handle the sensor-actuator loop needed to complete the epigenetic
and phylogenetic processes to be implemented by the tissue.

The system interface of the Poetic device plays a major role in allowing for its
scalability features. This means that it is possible to connect several POEtic chips in
order to construct an electronic tissue whose size can be accommodated to the actual
needs of a given application without posing specific constraints neither on the system

180 J.M. Moreno, Y. Thoma, and E. Sanchez

architecture nor in the connectivity pattern among the POEtic chips that constitute the
tissue.

In this way, a POEtic tissue can be constructed as a bidimensional array constituted
by POEtic chips. The connectivity between these chips is based on two different
buses, named organic (O) and interface (I) buses. The signals that constitute the or-
ganic bus permit to communicate (at a cellular level) the organic subsystems present
in every POEtic chip. The interface bus carries those signals that permit to handle the
collection of POEtic chips as a single tissue, so that from a user point of view the
tissue has only one environment subsystem and one organic subsystem. This is repre-
sented in Fig. 2.

P P
I

O P

I O I O I O

I

O

P

I O

P

I O

I

O P

I O

I

O

P

I O

I

O

I

O

I

O P

I O

I

O P

I O

I

O

I O I O I O

I

O

I

O

I

O

P P
I

O P

I O I O I O

I

O

P

I O

P

I O

I

O P

I O

I

O

P

I O

I

O

I

O

I

O P

I O

I

O P

I O

I

O

I O I O I O

I

O

I

O

I

O

P P
II

OO P

I O I O I OII OO II OO II OO

II

OO

P

II OO

P

II OO

II

OO P

II OO

II

OO

P

II OO

I

O

I

O

I

O

II

OO

II

OO

II

OO P

II OO

II

OO P

II OO

II

OO

I O I O I OII OO II OO II OO

I

O

I

O

I

O

II

OO

II

OO

II

OOEnvironment
subsystem

Organic
subsystem

sensorsactuators

POEtic chip

Environment
subsystem
Environment
subsystem

Organic
subsystem
Organic

subsystem

sensorsactuators

POEtic chip

Environment
subsystem

Organic
subsystem

sensorsactuators

POEtic tissue

Environment
subsystem
Environment
subsystem

Organic
subsystem
Organic

subsystem

sensorsactuators

POEtic tissue

Fig. 2. Scalability properties of the POEtic tissue

2.2 The Organic Subsystem

The organic subsystem of the POEtic device is made up of 2 layers, as depicted in
Fig. 3: a two-dimensional array of basic elements, called molecules, and a two-
dimensional array of routing units. Each molecule is connected to its four neighbours
in a regular structure. Mainly containing a 16-bit look-up table (LUT) and a flip-flop
(DFF), it has the capability of accessing the routing layer that is used for inter-cellular
communication. This second layer implements a dynamic routing algorithm allowing
the creation of data paths between cells at runtime.

A molecule has eight different operational modes, to speed up some operations,
and to use the routing plane.

• In 4-LUT mode, the 16-bit LUT supplies an output, depending on its four
inputs.

• In 3-LUT mode, the LUT is split into two 8-bit LUTs, both supplying a re-
sult depending on three inputs. The first result can go through the flip-flop,
and is the first output. The second one can be used as a second output, and is
directly sent to the south neighbor (can serve as a carry in parallel opera-
tions).

 POEtic: A Prototyping Platform for Bio-inspired Hardware 181

Fig. 3. Organization of the organic subsystem

• In Comm mode, the LUT is split into one 8-bit LUT, and one 8-bit shift reg-
ister. This mode could be used to compare a serial input data with a data
stored in the 8-bit shift register.

• In Shift Memory mode, the 16 bits are used as a shift register, in order to
store data, for example a genome. One input controls the shift, and another
one is the input of the shift memory.

• In Input mode, the molecule is a cellular input, connected to the inter-
cellular routing plane.

• In Output mode, the molecule is a cellular output, connected to the inter-
cellular routing plane.

• In Trigger mode, the 16-bit shift register should contain "000...01" for a 16-
bit identifier system. It is used by the routing plane to synchronize the identi-
fier decoding during the routing process.

• In Configure mode, the molecule can partially configure its neighborhood.
One input is the configuration control signal, and another one is the configu-
ration shifting to the neighbors.

The configuration of the device can be made in a parallel manner, through a 32-bit
bus. The 76 configuration bits of a molecule are split into three 32-bit words. Addi-
tionally, the configuration system of the molecules can be seen as a shift register of 76
bits split into 5 blocks: the LUT, the selection of the LUT’s input, the switch box, the
mode of operation, and an extra block for all other configuration bits. Each block
contains, as shown in Fig. 4, together with its configuration, one bit indicating, in case
of a reconfiguration coming from a neighbour, if the block has to be bypassed. This
bit can only be loaded from the microprocessor.

The special configure mode allows a molecule to partially reconfigure its
neighbourhood. It sends bits coming from another molecule to the configuration of
one of its neighbours. By chaining the configurations of neighbouring molecules, it is

182 J.M. Moreno, Y. Thoma, and E. Sanchez

Fig. 4. Organization of the configuration bits for partial reconfiguration

possible to modify multiple molecules at the same time, allowing, for example, the
synaptic weights in a neuron to be changed. Moreover, this mechanism permits to
use up to 54 of the configuration bits to store information, that can be accessed
serially.

2.3 Dynamic Routing

The dynamic routing system is designed to automatically connect the cells’ inputs and
outputs. Each output of a cell has a unique identifier. For each of its inputs, the cell
stores the identifier of the source from which it needs information. A non-connected
input (target) or output (source) can initiate the creation of a path by broadcasting its
identifier, in case of an output, or the identifier of its source, in case of an input. The
path is then created using a parallel implementation of the breadth-first search algo-
rithm. When all paths have been created, the organism can start operation, and exe-
cute its task, until a new routing is launched, for example after a cell addition or a
cellular self-repair.

Our approach has many advantages, compared to a static routing process. First of
all, a software implementation of a shortest path algorithm, such as Lee’s [11], is very
time-consuming for a processor, while our parallel implementation requires a very
small number of clock cycles to finalize a path. Secondly, when a new cell is created
it can start a routing process, without the need of recalculating all paths already cre-
ated. Thirdly, a cell has the possibility of restarting the routing process of the entire
organism, if needed (for instance after a self-repair). Finally, our approach is totally
distributed, without any global control over the routing process, so that the algorithm
can work without the need of the central micro-processor.

The routing algorithm is executed in four phases:

Phase 1: Finding a Master
In this phase, every target or source that wants to and is not connected to its corre-
spondent partner tries to become master of the routing process. A simple priority
mechanism chooses the most bottom-left routing unit to be the master, as shown in
Fig. 5. Note that there is no global control for this priority, every routing unit knowing
whether or not it is the master. This phase is over in one clock cycle, as the propaga-
tion of signals is combinational.

 POEtic: A Prototyping Platform for Bio-inspired Hardware 183

Fig. 5. Three consecutive steps of the routing algorithm. The black routing unit will be the
master, and therefore will perform its routing.

Phase 2: Broadcasting the Address
Once a master has been selected, it sends its address in case of a source, or the address
of the needed source in case of a target. It is sent serially, in n clock cycles, where n
is the size of the address. The same path as in the first phase is used to broadcast the
address, as shown in Fig. 6.

Fig. 6. The propagation direction of the address: north → south | east → south, west, and north |
south → north | west → north, east, and south | routing unit → north, east, south, and west

Every routing unit, except the one that sends the address, compares the incoming
value with its own address (stored in the molecule underneath). At the end of this
phase, that is, after n clock cycles, each routing unit knows if it is involved in this
path. In practice, there has to be one and only one source, and at least one target.

Phase 3: Eliminating sources and targets
In some situations, a source should start a routing process, for instance, in a devel-
opmental process. In such a process, it would be useful to have many sources and
targets with the same ID. So at this stage, it is possible there is more than one
source involved in the routing process. In order to avoid multiple sources, in this
phase that lasts only one clock cycle, if a source is at the origin of the routing proc-
ess, it sends a signal to every other routing unit, to let them know a source is at the
origin. Then every other source with the same ID disabled its participation in the
current process.

The same disable is performed in case a target launched the routing process.
Every target that is not the master disables its participation to the current process, to
ensure that the target that started the process will be the only one connected to a
source.

Phase 4: Building the Shortest Path
The last phase, largely inspired by [12], creates a shortest path between the selected
source and the selected targets. An example involving 8 sources and 8 targets is
shown in Fig. 7, for a densely connected network.

184 J.M. Moreno, Y. Thoma, and E. Sanchez

Fig. 7. Test case with a densely connected network

A parallel implementation of the breadth-first search algorithm allows the routing
units to find the shortest path between a source and many targets. Starting from the
source, an expansion process tries to find targets. When one is reached, the path is
fixed, and all the routing resources used for the path will not be available for the next
successive iterations of the algorithm.

3 Physical Realization

The POEtic chip has been implemented and fabricated as an ASIC of 54 mm2 using a
0.35 µm CMOS process. The chip, whose layout is depicted in Fig. 8, contains 144
molecules organized as an 8x18 array and the complete environment subsystem ex-
plained previously. Even if implemented using a standard technology the ASIC im-
plementation of the POEtic tissue demonstrates its superior integration capabilities
when compared with those offered by standard prototyping platforms (the prototyping
experiments performed within the framework of the project show that an FPGA with
3 million system gates capacity is able to implement the functionality of just 80 PO-
Etic molecules).

Specific development boards have been constructed in order to test the POEtic de-
vices and to implement practical applications on them. These are depicted in Fig. 9.
Fig. 9(a) represents the master board, containing one POEtic chip, Flash and SDRAM
memory blocks and a USB communication unit that permits to create an interface
with an external host. Fig. 9(b) depicts the slave board, containing a 2 x 2 array of
POEtic chips. The slave board can be attached to the master board, and it is also pos-
sible to connect several slave boards between them in order to create an electronic
tissue with the required size for the application to be handled.

Since the complete POEtic tissue has been specified and developed using a stan-
dard hardware description language (VHDL) it can be implemented in a standard
prototyping platform (though with limited functionality due to the capacity restric-
tions of current programmable devices). Therefore, in order to facilitate the

 POEtic: A Prototyping Platform for Bio-inspired Hardware 185

Fig. 8. Layout of the POEtic chip

Fig. 9. Details of (a) the master and (b) slave boards developed for the POEtic devices

use of the tissue by external users a complete set of tools have been developed within
the framework of the project. This set includes a schematic editor and synthesizer, a
molecule-level design entry and simulation tool for the organic subsystem, a C com-
piler and an assembler integrated in a graphical user interface with language-sensitive
editing capabilities, a graphical user interface for the simulation of programs devel-
oped for the microprocessor and a system debugger.

186 J.M. Moreno, Y. Thoma, and E. Sanchez

4 Conclusions

The POEtic project has produced at its end the first programmable integrated system
with capabilities inspired in the organization principles present in living beings: evo-
lution, development/growth, self-replication, self-repair and learning. The resulting
electronic device permits to construct a multi-cellular tissue whose size can be
adapted to the specific requirements of the application to be handled. The internal
architecture of the device includes features, like dynamic partial reconfiguration, self-
configuration or in-hardware dynamic routing, that were never combined (if not pre-
sent at all) in any past electronic device.

In this paper we have presented the architecture that has been conceived for the
POEtic devices, as well as the internal organization of its main constituent elements.
Then the physical implementation details of the integrated systems and the develop-
ment boards constructed to create applications based on these devices. The whole
system has been described and developed using a standard hardware description lan-
guage (VHDL). This, together with the set of tools that have been developed for the
devices, will permit to test the concepts developed within the project using standard
prototyping platforms.

The availability of this brand new family of programmable devices thus opens long
term opportunities for the implementation of electronic systems and applications able
to take profit of these new features. Among them we could consider the following list:

• Autonomous adaptive systems for deep space exploration.
• Safety critical systems in the aeronautics and the automotive domains.
• Sensor integration for distributed, highly immersive sensor and actuator en-

vironments.
• Personalized, user-adaptable assistant systems.
• User-adaptable monitoring and early warning systems for handicapped or

elderly people.

Our current work is concentrated in the prototyping of large-scale spiking neural
networks models with bio-inspired learning mechanisms using the prototyping plat-
form offered by the POEtic devices.

Acknowledgements

The work presented in this paper has been funded by the grant IST-2000-28027 (PO-
Etic) of the European Community and by grant OFES 00.0529-2 of the Swiss gov-
ernment. The information provided is the sole responsibility of the authors and does
not reflect the Community’s opinion. The Community is not responsible for any use
that might be made of data appearing in this publication.

References

1. Vinger, K.A., Torresen, J.: Implementing evolution of FIR-filters efficiently in an FPGA.
Proceedings of the NASA/DoD Conference on Evolvable Hardware. IEEE Computer So-
ciety (2003) 26–29

 POEtic: A Prototyping Platform for Bio-inspired Hardware 187

2. Haddow, P.C., Tufte, G.: Bridging the Genotype-Phenotype Mapping for Digital FPGAs.
Proceedings of the NASA/DoD Conference on Evolvable Hardware. IEEE Computer So-
ciety (2001) 109-115

3. Sekanina, L: Virtual reconfigurable Circuits for Real-World Applications of Evolvable
Hardware. Evolvable Systems: From Biology to hardware. Lecture Notes in Computer
Science, Vol. 2606. Springer-Verlag, Berlin Heidelberg New York (2003) 186-197

4. Sekanina, L., Friedl, S.: On Routine Implementation of Virtual Evolvable Devices Using
COMBO6. Proceedings of the NASA/DoD Conference on Evolvable Hardware. IEEE
Computer Society (2004) 63-70

5. Macias, N.J.: The PIG Paradigm: The design and Use of a Massively Parallel Fine
Grained Self-Reconfigurable Infinitely Scalable Architecture. Proceedings of the
NASA/DoD Conference on Evolvable Hardware. IEEE Computer Society (1999) 175-180

6. Macias, N.J, Durbeck, L.J.K.: Self-assembling Circuits with Autonomous Fault Handling.
Proceedings of the NASA/DoD Conference on Evolvable Hardware. IEEE Computer So-
ciety (2002) 46-55

7. Ullmann, M., Hübner, M., Grim, B., Becker, J.: On-Demand FPGA Run-Time System for
Dynamical Reconfiguration with Adaptive Priorities. Field Programmable Logic and Ap-
plications. Lecture Notes in Computer Science, Vol. 3203. Springer-Verlag, Berlin Hei-
delberg New York (2003) 454-463

8. Bartosinski, R., Danek, M., Honzik, P., Matousek, R.: Dynamic Reconfiguration in
FPGA-based SoC designs. Proceedings of the 2005 ACM/SIGDA 13th international
Symposium on Field-programmable gate arrays (2005) 274

9. Tyrrell, A.M., Sanchez, E., Floreano, D., Tempesti, G., Mange, D., Moreno, J.M.,
Rosenberg, J., Villa, A.E.P.: POEtic Tissue: An Integrated Architecture for Bio-Inspired
Hardware. Evolvable Systems: From Biology to Hardware. Lecture Notes in Computer
Science, Vol. 2606. Springer-Verlag, Berlin Heidelberg New York (2003)129-140

10. ARM. Amba specification, rev 2.0. advanced risc machines ltd (arm).
http://www.arm.com/armtech/amba_spec (1999)

11. Lee. C.Y.: An algorithm for path connections and its applications. IRE Transactions on
Electronic Computers, Vol EC-10:3 (1961) 346-365

12. Moreno, J.M., Sanchez, E., Cabestany, J: An in-system routing strategy for evolvable
hardware programmable platforms. Proceedings of the NASA/DoD Conference on Evolv-
able Hardware. IEEE Computer Society (1999) 157-166

	Introduction
	The POEtic Architecture
	The Environment Subsystem and System Interface
	The Organic Subsystem
	Dynamic Routing

	Physical Realization
	Conclusions
	Acknowledgements
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

