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Abstract. This article describes an implementation of a basic multi-
processor system that exhibits replication and differentiation abilities on
the POEtic tissue, a programmable hardware designed for bio-inspired
applications [1, 2] . As for a living organism, whose existence starts with
only one cell that first divides, our system begins with only one totipo-
tent processor, able to implement any of the cells required by the final
organism, which can also fully replicate itself, using the functionalities
of the POEtic substrate. Then, analogously to the cells in a developing
organism, our just replicated totipotent processors differentiate in order
to execute their specific part of the complete organism functionality. In
particular, we will present a working realization using MOVE processors
whose instructions define the flow of data rather than the operations
to be executed [3]. It starts with one basic MOVE processor that first
replicates itself three times; the four resulting processors then differen-
tiate and connect together to implement a multi-processor modulus-60
counter.

1 Introduction

Multi-cellular organization is one of the key concepts for a lot of living crea-
tures. In fact, almost every organism, except viruses and bacteria, is based on
this structure that enables an individual to develop an astounding complexity,
starting from only one relatively simple cell. Moreover, being a multi-cellular
organism offers more possibilities like being able to tolerate some faults, to self-
repair or to exhibit self-healing capabilities.

For several reasons, such abilities could obviously be of great interest for
multi-processor systems. One of the first reasons is the programmability of a
group of processors having to execute collectively a specific task. Today, we
can still program individually each processor of the set and give it a specific
code. But the size of the electronic components is continuously shrinking and
we will soon enter in the era of nano-electronics. In such a case, the processor
arrays will have to be realized on an homogeneous substrate consisting in a lot
of massively parallel basic nano-components. As a result, it will be very difficult,
perhaps even impossible, to initialize one by one each processor of such an array.
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Consequently, the multi-processor systems of tomorrow could take advantage of
a self-replication/differentiation mechanism to be more easily configured.

Then, as the scale of electronics will decrease, faults will happen in the circuits
with a greater probability than today. Consequently, it could be useful to have
a system that could tolerate some faults or, at least, avoid some parts of the
circuit where the faults are detected.

In this paper, we propose an implementation of a system showing such capabil-
ities consisting in one totipotent processor, i.e. a processor capable of executing
all the sub-tasks required by an application, that first replicates itself. Then,
the cloned processors bind themselves and differentiate in order to achieve a full
multi-processor system. To illustrate this process, we will use a simple system
that implements a watch counter using four processors. The system has been re-
alized in a slightly modified version of the POEtic tissue [1, 2], a reconfigurable
logic circuit structure especially designed for bio-inspired applications that will
be presented in section 2.2.

In the following sections, we will first describe the background used to realize
our system: we will succinctly present the Embryonics project in section 2.1.
Then in section 2.2 we will recall the main characteristics of the POEtic tissue.
In section 2.3, we will then expose briefly the MOVE paradigm, also known as
Transport Triggered Architecture (TTA), on which our processors are based.
These bases in mind, we will present the general architecture of our processor in
section 3. Then, the self-replication and the differentiation/connection processes
will be explained in sections 4 and 5 respectively. The following section will
deal with the hardware realization of the system and its implementation on the
BioWall [4]. Finally, we will conclude this article with a section discussing the
future developments that our system will undergo.

2 Background

Before describing concretely our system, we will now expose the background from
which we started the development of our self-replicating processors that differ-
entiate and bind together. We will briefly present the Embryonics project and
its major realization, the BioWatch. Then we will describe more thoroughly the
POEtic substrate. To close this section, we will present the Transport Triggered
Architecture, also known as the MOVE processor paradigm.

2.1 The Embryonics Project

The application of biological ontogenesis to the design of digital hardware has
been studied for several years within the Embryonics project [5]. One of its
major contribution to the field is the self-contained representation of a possible
mapping between the world of multi-cellular organisms in biology and the world
of digital hardware systems, based on 4 levels of complexity, ranging from the
population of organisms to the molecule (Fig. 1).

Within this mapping, the Embryonics project defines an artificial organism
as a parallel array of cells, where each cell is a simple processor that contains the
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Fig. 1. The four hierarchical levels of complexity of the Embryonics project

description of the operation of every other cell in the organism in the form of a
program (the genome). This program, replicated in each cell of the organism as
in a living being, is read in parallel in each cell but different parts of it are exe-
cuted depending on the spatial coordinates of the cell within the organism. The
redundancy inherent in this approach is compensated by the added capabilities
of the system, such as growth [6] and self-repair [7]. The molecules are defined as
the basic elements of the programmable logic circuits; in the Embryonics project,
they correspond to simple programmable multiplexers.

A configuration bitstream (the genome of the artificial organisms) is injected
into the circuit, causing the molecules to self-assemble into cells. The cells them-
selves, after a replication phase analogous to cellular division and growth, self-
organize to form the final organism.

Using this approach, the Embryonics project demonstrated two basic prop-
erties of its substrate with the implementation of the BioWatch [8], an elec-
tronic modulus-60 counter made of four cells exhibiting differentiation and fault-
tolerance abilities. We have decided to use this same application to demonstrate
the capabilities of our system.

2.2 The POEtic Tissue

Bio-inspiration in the design of digital hardware finds its source in essentially
three biological models [9, 10]: Phylogenesis (P), the history of the evolution of
the species through time, Ontogenesis (O), the development of an individual
as directed by his genetic code, from its first cell to the full organism, and
Epigenesis (E), the development of an individual through learning processes.
All of these models, to a greater or lesser extent have been used as a source of
inspiration for the development of computing machines (such as the ontogenesis
in the Embryonics project or epigenesis for artificial neural networks) but before
the POEtic project [1, 2], no hardware substrate had been developed that could
combine the three axes of bio-inspiration into one single circuit.
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Indeed, the POEtic tissue draws inspiration from these three axes and from
the multi-cellular structure of complex biological organisms. This reconfigurable
circuit has been designed to develop and adapt its functionality through the
processes of evolution, growth and learning. The organizational architecture of
a POEtic system is the same as the one of an Embryonics design: it also follows
the four levels of complexity defined in figure 1, once again from the population
of organisms to the molecular level.

Physically, the tissue is composed of two layers shown in the left of figure 2:
a grid of molecules and a cellular routing layer. As in Embryonics, the smallest
units of the POEtic programmable hardware are also called molecules and are
also arranged as a two-dimensional array. The cellular routing layer is also a two-
dimensional array but contains special routing units that are responsible for the
inter-cellular communication. This routing layer implements a distributed rout-
ing algorithm based on identifiers allowing the creation of data paths between
cells at runtime. Each molecule, as well as each routing unit, are connected to
their respective four neighbours in a regular structure, also shown in the left of
figure 2. Moreover, the molecules have the capability of accessing the routing
units to set up connections among cells.

As shown in the right of figure 2, a molecule mainly contains a 16-bit look-up
table (LUT) and a D flip-flop (DFF); its inputs are selected by multiplexers
and its outputs are routed to any direction through a switchbox. Moreover,
a molecule possesses different configurable operational modes that let it act
of different manners. The content of the LUT and of the DFF, as well as the
selection of the multiplexers for the inputs and the outputs of a molecule and the
mode in which the molecule has to work, are defined by 76 bits of configuration.

In the first four operational modes, that are quite standard in the reconfig-
urable hardware area, a molecule can be configured as a simple 16-bit LUT,
as two 8-bit LUT, as a 8-bit LUT plus a 8-bit shift register, or as a 16-bit

R outing Unit

Molecule

L ook up table

DFF

Output1

Output2

Switchbox

Input multiplexers

Input(0..3)

Fig. 2. Left: POEtic two-layer physical structure with the molecules and their routing
units. Right: Basic structure of a POEtic molecule.
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shift-register. Then there are four additional operational modes that are specific
to the POEtic tissue: the first two are the Output and Input modes in which
the molecule is connected to its routing unit and contains the 16-bit long rout-
ing identifier of the molecule itself, respectively of the molecule from where the
information has to arrive. The third special mode is the Trigger mode, in which
the task of the molecule is to supply a trigger signal needed by the routing al-
gorithm for synchronization purposes. The last mode is the Configure mode, in
which a molecule has the capability of partially reconfiguring its neighbours, i.e.
the molecule can modify a fixed subset of the configuration bits of its neighbours
(68 bits out of 76).

Inter-molecular communication, i.e. short-range communication between the
programmable logic elements in the POEtic circuit, is implemented by a switch
box (identical in all molecules) that prevents the possibility of short circuits in
the network by using multiplexers and directional lines. There are two of these
lines from and to each cardinal direction.

Inter-cellular routing, i.e. long-range communication between the processors
implemented using the programmable logic, is implemented using a distributed
routing algorithm inspired by Moreno [11], that automatically connects the cells
inputs and outputs. A non-connected input (target) or output (source) can ini-
tiate the creation of a path by broadcasting its identifier, in case of an output,
or the identifier of its source, in case of an input. The path linking them is then
created using a parallel implementation of the breadth-first search algorithm,
similar to Lee’s algorithm [12] that configures multiplexers in the routing units.
When all the paths have been created, the organism can start operation, and
executes its task, until a new routing is launched.

Note that in the standard POEtic design, in the IO modes, the molecules
only have one control signal that forces or not a connection to be established.
In addition to this, to implement self-replication we had to slightly modify the
standard POEtic design in order to improve the IO molecules with another
control signal that makes the molecule to accept or not a connection. As a result,
our version of the POEtic IO molecules has two control signals: one to force a
molecule to establish a connection, i.e. ForceConnect, the other to accept the
connections, i.e. AcceptConnect.

The routing approach used in POEtic has many advantages compared to a
static routing process. First of all, it requires a very small number of clock cycles
to finalize a path. Secondly, when a new cell is created it can start a routing
process without the need of recalculating all paths already created. Thirdly, a
cell has the possibility of restarting the routing process of the entire organism if
needed. Finally, this approach is totally distributed, without any global control
over the routing process, a clear advantage where scalability is concerned.

2.3 MOVE Processors

We will now present the basic processor structure that has been used for the
realisation of our system: the MOVE architecture, also known as the Transport-
Triggered Architecture (TTA) [3, 13, 14]. This paradigm was originally developed
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Fig. 3. Internal structure of a TTA processor

for the design of application-specific dataflow processors (processors where the
instructions define the flow of data, rather than the operations to be executed).

In many respects, the overall structure of a TTA-based system is fairly con-
ventional: data and instructions can be fetched to the processor from the main
memory using standard mechanisms (caches, memory management units, etc.)
and are decoded as in conventional processors. The basic differences lay in the
architecture of the processor itself, and hence in the instruction set.

Rather than being structured, as is usual, around a more or less serial pipeline,
a MOVE processor (Fig. 3) relies on a set of Functional Units (FUs) connected
together by one or more transport busses. All the computation is carried out by
the functional units (examples of such units can be adders, multipliers, register
files, etc.) and the role of the instructions is simply to move data from and to
the FUs in the order required to implement the desired operations. Since all
the functional units are uniformly accessed through input and output registers,
instruction decoding is reduced to its simplest expression, as only one instruction
is needed: move.

TTA move instructions trigger operations which, in the simplest case, corre-
spond to normal RISC instructions. For example, in order to add two numbers
a RISC add instruction has to specify two operands and, most of the time, a
destination register to store the result. The MOVE paradigm requires a slightly
different approach to obtain the same result: instead of using a specific add
instruction, the program moves the two operands to the input registers of a
functional unit that implements the add operation. The result can then be re-
trieved in the output register of this functional unit and moved wherever it is
needed.

3 Processor Architecture

After the presentation of the background used for our realization, we will now
describe it more precisely. As mentioned, our test system is composed of four
processors, the cells, that form a 4-digit modulus-60 counter, the organism,
counting seconds and minutes. Each of the processors must then handle one
digit. Consequently, two of them count from 0 to 9 while the two others count
from 0 to 5. In their final configuration, they are logically organized so as to
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form a chain that is represented in the organismic level of figure 4 (note also the
presence of the Seed Unit, whose function will be explained in section 5).

The normal operation of the system is the following: the processor that han-
dles the rightmost digit, i.e. the units of seconds in the clock parallel, perma-
nently counts from 0 to 9. When this processor arrives at 9, it generates a signal
(EnableCount) telling the next processor, which handles the tens of seconds,
to increment its own digit. When the tens of seconds processor arrives at 5, it
generates in its turn a signal enabling the next processor on the chain, i.e. the
units of minutes, to count. And so on until the tens of minutes.

As exposed in the precedent section, we realized our processors using the
MOVE paradigm. Its actual implementation in POEtic molecules is shown in
the cellular level of figure 4, while its logical architecture can be seen in figure 5.
It resulted in a TTA processor possessing the following Functional Units (FU):

– FU Cmp used to compare two values. The result is directly given to the
Execution Stack (see below for a short explanation).

– FU Inc used to increment one value.
– FU Position used to get the position of the processor inside the chain.
– FU EnableIn used to get the value of the EnableCount signal coming from

the precedent processor on the chain.
– FU EnableOut used to set the value of the signal enabling the counting of

the next processor on the chain.
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Fig. 5. Detailled architecture of the processor

– FU IO Active/Self used to connect one not yet differentiated processor, or
used by the processor to connect itself in order to enable the whole system
when the differentiation/connection process is finished (see section 5 for more
details).

– FU IO ToPrec used to set up and configure the connections to the prece-
dent processor on the chain. It is used to receive the processor position inside
the chain and the EnableCount signal. It is also used to transmit the Sback
signal whose purpose is explained in section 5.

– FU IO ToNext used to set up and configure the connections to the next
processor on the chain.

The three FU IOs permit the processor to control the behaviour of the Inputs
and Outputs: the processor can access and set up the ForceConnect (to force a
molecule to establish a connection) and the AcceptConnect (to allow a molecule
to accept the connections) control signals by setting the appropriate values in
the FU IO registers.

Our MOVE processor, as is usual, contains a data bus spanning all the FUs
and two memory busses: one for the source addresses and the other for the
destination addresses of each move instruction. The processor has two memories:
one memory (MEM) for the normal operation of the processor (i.e. the counting
and the generation of signals) and another memory (DC MEM) that contains
the code for the differentiation and connection mechanisms.

Then, as the processor has been realized on the POEtic substrate, which pro-
vides a specific molecule mode to implement shift memories (see section 2.2), we
decided that, instead of an addressable memory that could support jumps in the
code, we would use cyclic memories, where each instruction is read successively,
and executed or not, depending on a special unit called Execution Stack.
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To summarize the behaviour of the Execution Stack, we can say that, when
facing an ”if condition then (x1; x2; ...) else (y1; y2; ...) end” instruction, if
the condition is valid, the stack will permit the execution of the X instructions
and then block the Y instructions. Otherwise, it will permit the Y execution
and block the X one. A more detailed explanation of this unit can be found
in [15, 16].

Finally, for demonstration purposes, we added a special unit that is used to
display the digit handled by each processor.

4 Self-replication

As explained in the introduction and in analogy to the majority of living beings,
our implementation starts with only one cell/processor containing the informa-
tion for the entire system to be realized. As a metaphor of the living cell division
and multiplication, this first processor replicates in order to generate copies of
itself that will then differentiate.

The self-replication process that we have implemented is based on the self-
inspection concept [17], where, in order to replicate itself, a system has to gener-
ate its description by examining its own structure. This description is then used
to create an identical copy of the original system [18].

More precisely, such a self-replication process in our reconfigurable circuit
should proceed as follows: first, the cell that wants to replicate itself has to
emit the configuration bits of every one of its molecules. Then, in some way,
these bits are routed to their destination, i.e. the place where the copy will be
constructed. These configuration bits are then injected into molecules that are
not yet configured. These molecules receive their new configuration and become
copies of the initial molecules. When all the configuration bits of each molecule
of the initial system have been emitted, routed and injected in their new place,
the cell has replicated itself.

We have to mention one of the requirements for a system to possess the self-
replication ability: the order in which the system emits the configuration bits of
its molecules, as well as the spatial position of each molecule with respect to the
others, have to be the same as the order and position the empty molecules load
their new configuration. One of the easiest way to obtain such a behaviour is to
have a ”path” that goes through each molecule of the system to be replicated.
Then the configuration bits are expressed sequentially by shifting them along
this path. In parallel, the injection of the configuration into the empty molecules
has to construct and follow the same ”path”. With such an idea, self-replication
becomes possible because every molecule is replicated in correct order and in the
right place.

For that purpose, we had to separate our self-replicating processor in two
parts: a functional part (FP) that contains the object we want to replicate,
i.e. the MOVE processor itself, together with its corresponding replication path,
and a self-replication part (SRP) that is of course in charge of the self-replication
(Fig. 6).
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The SRP contains a counter that knows the total number of configuration
bits that have to be emitted by the molecules that want to replicate. It also
contains an Input or an Output molecule that is used to connect an emitting
SRP to a receiving SRP. Finally, we find in the SRP a molecule in the Configure
mode that is used to force the molecules of the FP to shift their configuration
bits along the replication path.

We will now detail the self-replication process that uses the self-configuration
ability of the POEtic molecules as well as their distributed routing. At the be-
ginning, as shown in figure 6, the system contains the following elements:

– Functional Part FP the processor that has to be replicated (Fig. 5).
– Emitting SRP that contains an Output molecule and is used to connect

to one or more receiving molecules.
– One or more Receiving SRP that contain an Input molecule and are

used to receive the connection from the Emitting SRP.
– Replication Paths that are already configured. The first path span all the

molecules of the FP. The others draw the same trajectory as the first path
and are placed next to the Receiving SRP.

The presence of these paths at system startup is a shortcoming due to
the impossibility, in the current implementation of the POEtic circuit, to
completely configure all the bits of a molecule using the Configure mode.
Removing these configuration paths is the next logical step in the develop-
ment of our system.

The process starts with the Emitting SRP trying to connect to one Receiving
SRP. This is done using the distributed routing algorithm of POEtic to link
the Output molecule of the Emitting SRP to the Input molecule of the Receiv-
ing SRP. As a result, the SRPs can be placed anywhere on the substrate and
the routing process will eventually connect the Emitting SRP to the nearest
Receiving SRP.

When the two SRPs are connected, their respective Configure molecules start
to shift the configuration of their replication paths. The Emitting SRP shifts
the configuration of the FP and gets one configuration bit per clock cycle. This
bit is duplicated and one copy is transmitted through the connection to the
Receiving SRP while the second one is injected again in the FP replication path.
Indeed, in order to obtain a replication, it is necessary that after this process, the
starting FP finds itself in its initial state. Consequently, during all the process
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of transmission of the configuration bits, the Emitting SRP and its replication
path emulate a shift register buckling on itself, so that the FP finds again its
initial state.

On the other side, the Receiving SRP gets the configuration bit from its In-
put molecule and injects it in its own replication path. This process repeats
itself during a number of clock cycles determined by the SRPs and that is equal
to the total number of configuration bits that have to be expressed, i.e. 68
bits that are configurable per molecule times the number of molecules to be
replicated.

When the configuration is finished, the system contains two (or more)
replicated FP that can start their normal functionality.

Note that this process is not limited to only one processor copy: as the
Emitting SRP can connect to more than one Receiving SRP at a time, then
the configuration bits can be injected in more than one replication path and
consequently the number of copies of the initial processor is not limited. In our
case, the processor makes three copies of itself: at the end of the self-replication
process, the system contains four processors that are in a quiescent state, simply
waiting for an activation signal.

5 Differentiation and Connections

In living organisms, when the first cell has divided, resulting in many totipo-
tent identical cells, these latter have to specialize to handle a specific task that
depends on their neighbouring cells and on the place they have inside the entire
organism. As a result, the cells differentiate and connect themselves together to
form the working organism.
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Similarly, after the self-replication phase, the POEtic substrate contains four
identical quiescent totipotent processors that still need to differentiate and
connect in order to achieve the whole system functionality. This situation is
shown at the top of figure 8 (note that only the IO elements of the processors
are represented and that on the top of the figure the labels are not detailled).

In fact, the processor are waiting for an activation signal that will launch
the differentiation/connections process. In order to generate this first activation
signal, we implemented a special unit: the Seed Unit (SU). It possesses a counter
that makes it wait for the end of the processor self-replication. At that time,
the SU activates the ForceConnect control signal that forces the connection of
its Output OUT Activate, (a) in figure 8. This Output will then initiate a
distributed routing process to connect the nearest IN Activate molecule that
is configured in order to accept the connections (b). Note that all the quiescent
processors have their IN Activate molecule waiting for a connection, i.e. with
their AcceptConnect control activated.

As a result, the nearest replicated processor accepts the connection, becomes
linked to the SU and receives an activation signal through the newly established
connection. This activation signal makes the processor to activate its differenti-
ation and connection memory (DC MEM in figure 5) and start the shifting and
the execution of its instructions.

The first instruction makes the ForceConnect control of the FU IO ToPrec
be activated (c): the IO molecules of this FU will immediately try to initiate
new connections. The only available corresponding molecules that have their
AcceptConnect control activated are the ones of the SU, consequently these
molecules become linked (d). As a result, the processor gets from these new
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inputs its position inside the chain (zero in this case) as well as its EnableCount
signal.

Then the DC MEM makes the processor activate the AcceptConnect controls
of its FU IO ToNext (e); this is done in order for the next processor on the
chain to be able to connect back.

Finally, as the processor now knows it is not the last one of the chain, hav-
ing already received its position from the FU IO ToPrec, it will activate the
ForceConnect control of its OUT Activate molecule (f). This molecule will
then establish a connection to the next available In Activate molecule (g), and
launch the differentiation-connection process of the second processor.

The second processor will then execute this process again, connect its FU
IO ToPrec to the first processor (whose FU IO ToNext now accept the con-
nections). The same process happens for the third processor on the chain.

For the last processor, the points (f) and (g) are not executed: as the processor
knows it is the last one of the chain, it does not need to connect to another proces-
sor but must inform the whole chain that the differentiation-connection process
is finished and that the system now has to begin its normal multi-processor activ-
ity. Consequently, instead of its OUT Activate molecule, the fourth processor
will activate the ForceConnect control of its OUT Self molecule (h). This latter
will then connect to the IN SBack molecule of its FU IO ToNext (i).

This last connection provides an activation signal that is transmitted through
the whole processor chain using the In SBack and the OUT SBack IOs. This
signal activates the processors MEM memories (figure 5), whose instructions
contain the code required to execute each of the functionalities needed by the ap-
plication. The spatial position of the processor inside the chain, defined through
the differentiation process, is used to select the appropriate functionality.

6 Hardware Implementation

To have access to a sufficient number of molecules and to be able to integrate
our modifications to the design, we decided to emulate the POEtic substrate
on the BioWall [4], a two-dimensional electronic wall designed for bio-inspired
applications and composed of an array of reconfigurable circuits.

We made two major modifications to the standard POEtic specifications:
the first one is the improvement in the control signals of the IO molecules ex-
plained in section 2.2. The second one is the following: unlike the standard
POEtic connection schema shown in the left of figure 2 where each routing unit
is simultaneously connected to four molecules, we realized our POEtic imple-
mentation with one routing unit per molecule, permitting a denser connection
pattern.

The realization of one of our processor, with its self-replicating part, needs
30x12 POEtic molecules to be implemented. Using the BioWall for the imple-
mentation, we have 25x80 POEtic molecules available, which is sufficient to
demonstrate the self-replication, the differentiation/connection process and fi-
nally the normal operation of our multi-processor system.
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Fig. 9. a) Initialization state. b) Self-replication phase. c) The four totipotent proces-
sors before the differentiation/connection phase. d) Operational system.

Moreover, the display capabilities of the BioWall allows us to visually check
and demonstrate the correct behaviour of the entire system: some pictures of
it are shown in figure 9 and a video of the whole process can be found at
http://carg2.epfl.ch/Staff/JR/Videos/PoeMoveSR.avi.

7 Conclusion and Future Developments

We have realized a multi-processor system that exhibits self-replication, differ-
entiation and distributed connection abilities. Moreover, we have implemented
the whole system in hardware on the BioWall, demonstrating the feasibility of
the concepts. Nevertheless, a number of things can certainly be improved.

With its distributed connection ability, our system can bind together proces-
sors that have no fixed predetermined place on the substrate. If the system had
a cellular fault-detector, it could detect and disable faulty processors. As a re-
sult the differentiation/connections process would automatically avoid the faulty
processor and connect to the next correctly working one.

From another point of view, our system can not tolerate individual errors. As
a result, one of the improvements that could be added to the POEtic molecules,
as in the Embryonics project [7], is a molecular fault-tolerance capability.

Moreover, as already mentioned in section 4, the POEtic substrate has only
partial self-configuration abilities (the configuration bits that define the repli-
cation path can not be changed by the system). As a result, the replication
paths must be pre-configured in order to cross all the molecules that have to
be replicated. One major planned improvement consists of changing the POEtic
specification by allowing the system to set or reset each configuration bit and
consequently enabling a complete self-replication.
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Another improvement could be to differentiate the memory: in our system,
each processor possesses the same memory and executes the instructions or not,
depending on its position in the processor chain. To limit this redundancy we
could modify the memories and the differentiation process in order to copy only
the instructions needed by a specific processor in its specific memory.

Then, our system replicates and differentiates only once at the beginning.
We are currently working on a way to make these processes occur permanently
during the life of the organism, allowing in that manner growth, adaptation and
re-configuration in case of failures.

Despite all the things that we plan to integrate to future designs, we can
already say that in its current state, our realization is a real improvement com-
pared to the existing ones for several reasons. Firstly, contrary to the Embryonics
project, where the genome had to be injected in parallel in each cell, in our design
we only need to provide the genome one time to the circuit.

In the Embryonics project again, the circuit had been designed expressly for
the realization of a watch counter. With the use of the MOVE paradigm, our
design is much more versatile and can be modified very quickly to adapt to any
logical task, just by adding some Functional Units.

Moreover, as mentioned in the precedent section, compared to the standard
POEtic design, we made some improvements on the IO molecules and on the
routing layer in our hardware implementation.

Finally we can say that, even if some consequent work remains to be done, our
design is one good step ahead in the realization of a really efficient self-replicating
electronic system.
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