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Abstract. In the recent years, Xilinx devices, like the XC6200, were the
preferred solutions for evolving digital systems. In this paper, we present
a new System-On-Chip, the POEtic chip, an alternative for evolvable
hardware. This chip has been specifically designed to ease the imple-
mentation of bio-inspired systems. It is composed of a microprocessor,
and a programmable part, containing basic elements, like every standard
Field Programmable Gate Array, on top of which sits a special layer im-
plementing a dynamic routing algorithm. Online on-chip evolution can
then be processed, as every configuration bit of the programmable array
can be accessed by the microprocessor. This new platform can therefore
replace the Xilinx XC6200, with the advantage of having a processor
inside.

1 Introduction

Engineers and scientists have much to learn from nature, in term of design capa-
bilities. Living beings are capable of evolution, learning, growth, and self-repair,
among others. Each of these fields can serve as inspiration to build systems that
are more robust and adaptable. Three life axis define what makes nature a good
candidate from which we can draw inspiration: Phylogenesis (P), Ontogenesis
(0), and Epigenesis (E).

Phylogenesis is the way species are evolving, by transmitting genes from
parents to children, after a selection process. Based on the principles of the neo-
darwinian theory, scientists have designed evolutionary algorithms, and more
particularly genetic algorithms [1], that are used to solve complex problems for
which a deterministic algorithm can not find a solution in an acceptable period
of time.

Ontogenesis corresponds to the growth of an organism. In living beings, af-
ter fertilization, a single cell, the zygote, contains the genome that describes
the entire organism and starts dividing, until the organism is totally created.
Ontogenesis takes also care of self-healing, a very important feature of living
beings, that prevents them from dying after a light injury. In electronics, self-
repair based on ontogenetic principles has been applied to building more robust
systems [2-5].

Finally, epigenesis deals with learning capabilities. A brain, or more generally
a neural network, is the way life solved the learning problem. Taking inspiration
of real neurons, scientists have designed a huge variety of neural networks, to
solve different tasks, like pattern recognition [6] and robot learning [7].



These three life axis have often been considered separately for designing sys-
tems, or as a conjunction of learning and evolution. Until now, no real POE
system has been constructed. The POEtic project is therefore the logical conti-
nuity of bio-inspired systems. A new chip has been specially designed to ease the
development of such systems. It contains a microprocessor, and a reconfigurable
array offering capabilities of dynamically creating paths at runtime.

This paper focuses on the way POEtic, a promising alternative to the XC6200,
can be used as a platform for evolvable hardware [8,9]. Next section presents
briefly the principles of evolvable hardware and why field programmable gate ar-
rays are good candidates for such systems. Section 3 describes the POEtic chip,
with an emphasis on its usefulness for evolvable hardware. Section 4 presents
the way POEtic will be used for this purpose, and finally section 5 concludes.

2 Evolvable Hardware

Evolvable hardware (EHW), on the phylogenetic axis, deals with the design
of analog or digital circuits using genetic algorithms. This technic replaces an
engineer in the design task, and can act in many different areas. For instance,
basic systems like adders or multipliers can be built, while robot control can also
be generated. EHW processes can be evolved in simulation in many cases, but
software implementations are very slow, and cannot always fit real conditions.
Therefore, hardware platforms are needed, to generate operating circuits, in case
of analog design, and to speed up the entire process, in case of digital design.

2.1 FPGAs and the Xilinx XC6200 family

Field Programmable Gate Arrays (FPGAs) [10] are digital circuits that can be
reconfigured, and thus make them excellent candidates for implementing EHW.
Every commercial FPGA is based on a 2-dimensional array of cells, in which it
is possible to define the cells’ functionalities and the routing. The most widely
used for EHW, the Xilinx Virtex XC6200 family, has been utilized in many
experiments [11-15], due to its routing implementation based on multiplexers
rather than on anti-fuse or memory bits (short circuits can be generated in
almost every other types of FPGAs). The architecture of the XC6200 is very
simple, with cells based on some multiplexers and a flip-flop. Moreover, the
configuration bits arrangement is public, giving a programmer total control over
the configuration. Unfortunately, these devices are not available any more, and
no equivalent FPGA is available as of today.

The inherent parallelism of FPGAs allows to rapidly test individuals to eval-
uate their fitness, but a problem remains: the configuration is very slow. One
of the last family of Xilinx devices, the Virtex II Pro, embeds a microprocessor
that can access a reconfigurable array, but without the capability of reconfigur-
ing it. The POEtic chip, as explained in the next section, will be a new hardware
platform that solves this last drawback.



3 The POEtic Chip

The POEtic chip has been specifically designed to ease the development of bio-
inspired applications. It is composed of two main parts: a microprocessor, in
the environmental subsystem, and a 2-dimensional reconfigurable array , called
the organic subsystem (figure 1). This array is made of small elements, called
molecules, that are mainly a 4-input look-up table, and a flip-flop. In the or-
ganic subsystem, a second layer implements a dynamic routing algorithm that
will allow multi-chip designs, letting the user work with a bigger reconfigurable
virtual array.

The next section presents some features of the on-chip microprocessor. The
subsequent section describes the reconfigurable array, with a special emphasis
on how the different parts of the basic elements can be used to build an EHW
system similar to the XC6200.
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Fig. 1. The POEtic chip, showing the microprocessor and the reconfigurable array.
Many elements connected to the AMBA bus, like a second timer, serial and paral-
lel ports, are omitted in order to simplify the schematics. On the right, the organic
subsystem shows molecules on the bottom, and routing units on the top.

3.1 The Microprocessor

The microprocessor is a 32-bit RISC processor, specially designed for the POEtic
chip. It exposes 57 instructions, two of which give access to a hardware pseudo-
random number generator, that can be very useful for evolutionary processes.
This small number of instructions limits the size of the processor, leaving more
room for the reconfigurable array.

An AMBA bus [16] allows communication with all internal elements, as shown
in figure 1, as well as with the external world. It also permits to connect many
POEtic chips together, in order to have a bigger reconfigurable virtual array.



The microprocessor can configure the array, and also retrieve its state. The
access is made in a parallel manner, the array being mapped on the microproces-
sor address space. As a result, so that it is very fast to configure, or to partially
reconfigure the array, since the configuration of one molecule requires only three
write instructions. For instance, when dealing with evolutionary processes, the
retrieved state can be used to calculate the fitness of an individual and evolution
can be performed by the microprocessor, avoiding fastidious data transmission
with a computer.

A C compiler, as well as an assembler, has been developed, letting a user eas-
ily write programs for this microprocessor. Furthermore, an API will be supplied,
in order to rapidly build a genetic algorithm by choosing the type of crossing-
over, the selection process, and so on. Special functions will also simplify the
reconfigurable array configuration.

3.2 The Reconfigurable Array

The reconfigurable array is composed of two planes. The first one is a grid of ba-
sic elements, called molecules, based on a 4-input look-up table, and a flip-flop.
The second one is a grid of routing units, that can dynamically create paths at
runtime between different points of the circuit. They implement a distributed
dynamic routing algorithm, based on addresses. It can be used to create connec-
tions between cells in a cellular system (e.g. a neural network), to connect chips
together, or simply to create long-distance connections at runtime (interested
readers can see a description of this algorithm in [17]).
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Fig. 2. A “molecule” can act in eight different operational modes, the mode being
defined by three configuration bits. The left drawing shows a molecule in 4-LUT mode,
while the right depicts a molecule in 3-LUT mode.



The so-called molecules (see figure 2) execute a function, according to an
operational mode, defined for each molecule by three configuration bits (for
more details, see [17]). The eight operational modes are:

— 4-LUT: The molecule is a 4-input LUT.

— 3-LUT: The molecule is divided into two 3-input LUTs.

— Shift memory: The molecule is considered like a 16-bit shift register.

— Comm: The molecule is divided into a 3-input LUT and a 8-bit shift register.

— Configure: The molecule has the possibility of partially reconfigure its
neighborhood.

— Input: The molecule is an input from the routing plane.

— Output: The molecule is an output to the routing plane.

— Trigger: This mode is used to synchronize the dynamic routing algorithm.

3.3 Molecular communication

In addition to its functional part, a molecule contains a switch box for inter-
molecular communication. Like in the Xilinx XC6200 family, inter-molecular
communication is implemented with multiplexers. This feature, although being
more expensive in term of space and delays, avoids short circuits that could
happen when partially reconfiguring a molecule, or during an unconstrained
evolution process.

Every molecule is directly connected to its four neighbors, sending them its
output, while long-distance connections are implemented by the way of switch
boxes (figure 3). There are two input lines from each cardinal direction, and
two corresponding outputs. Each output can be selected from the six input lines
from the other cardinal directions, or from the output of the molecule (or the
inverse).

As there are eight possible configurations for an output multiplexer, three
configuration bits are necessary for each output. The total lets the switch box
being defined by (2 outputs by 4 directions by 3 bits = ) 24 bits. These 24 bits
could be part of the evolutionary process, or fixed, depending on the kind of
system we want to evolve.

For instance, in order to use the POEtic chip like a Xilinx XC6200, every
switch box should be configured as in figure 3. By fixing some configuration bits
to '0’, we can choose to only deal with one line to each direction, as shown in
the right of the figure.

In every of its operational modes, a molecule needs up to four inputs. Multi-
plexers are taking care of the selection of these inputs, like the two first inputs
shown in figure 4. An input can basically come from any long-distance line, but
each multiplexer has special features. Some can retrieve the flip-flop value, some
the direct neighbors output, and so on. By fixing some configuration bits, we
can for instance force the selection of a signal coming from NO_in, EO_in, SO_in,
WO_in. Therefore, only two bits are necessary to completely define every input.
This way, every input has the same potential as the others, which would not be
the case if every configuration bit could be modified.
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Fig. 3. On the left, the switch box contained in every molecule, as shown in figure
2, and on the right a subset of the possible configurations to reduce the genome size.
Black boxes represent configuration bits that can be used for evolution, while white
boxes are “don’t care bits” for such applications.

3.4 Configuration Bits

One of the advantages of the POEtic chip is the possibility to define any of the 76
configuration bits. These bits are split into five blocks, as shown in table 1. The
first bit of each block indicates whether the block has to be reconfigured or not, in
case of a partial reconfiguration coming from a neighbor molecule. As mentioned
before, the microprocessor can access (read/write) the configuration bits with a
32-bit bus. For EHW| this feature is very important in terms of execution time.
Since only two clock cycles are needed for a write and three words of 32 bits
define a molecule, the configuration of the entire array or of only a part of it is
very fast. In comparison with standard FPGAs, like a Xilinx with JBits [18,19],
in which the entire configuration bitstream must be sent each time in serial, the
reconfiguration, like the first configuration, is made in parallel, allowing a huge
gain in term of time. Moreover, compared to a total reconfiguration, if we only
evolve the switch box or the LUT, loading time can be divided by three, as only
part of the molecule configuration needs to be reloaded.

4 Evolvable Hardware on POEtic

In last section, we showed different parts of the reconfigurable array that can be
used in an evolvable process. The final chip being not yet available, we will not
present experimental results, but concepts that will be used later to demonstrate
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Fig. 4. The two first inputs of the molecule. The signals config * are configuration
bits, the two right outputs (lut_sel mux(X)) are the two first inputs of the LUT, and
all other signals are inputs that can be selected. The right figure shows a subset of
the possible inputs, obtained by fixing some configuration bits (black boxes represent
configuration bits that can be used for evolution).

the full potential of the POEtic chip. First we will have a look at what kind of
EHW is supported by POEtic, and secondly, we will describe how we can directly
evolve the bitstream as the genome.

4.1 POEtic evolvable characteristics

Following the classification developed by Torresen in [20,21], we can now pre-
cisely identify the capabilities of POEtic:

— The microprocessor can run a Genetic Algorithm.

— The target technology is Digital.

— The architecture applied in evolution can be Complete Circuit Design,
where building blocks and routing are evolved, or Circuit Parameter Tun-
ing, where only configurable parameters are evolved.

— The possible building blocks can be Gates (the LUTs), or Functions (neu-
rons, ...).



Table 1. The five blocks of configuration bits (the first three bits cannot be partially
configured by a neighbor molecule).

Number|Description

of bits
1 global partial configuration enable
2 configuration input origin
1 lut partial configuration enable
16 lut(15 downto 0) (cf. figure 2)
1 lut inputs configuration enable
14 selection of the lut inputs (cf. figure 4)
1 switchbox partial configuration enable

8x3 |3 bits for each of the 8 multiplexers (cf. figure 3)
mode partial configuration enable
operational mode (cf. section 3.2)
other bits partial configuration enable
sequential or combinational output
flip-flop reset value

dff enable used or not

clock edge

local reset origin

local reset enable
asynchronous/synchronous reset
molecule enable

value of the flip-flop

e = QO = e e | 0

— The evolution is made Online, because every individual will be tested using
the reconfigurable array.

— The evolution is On-chip, as the microprocessor is incorporated into the
reconfigurable chip.

— The scope of evolution can be Static, or Dynamic, depending on the type
of application.

POEtic, with its dynamic routing capability, could show function level evo-
lution that involves sine generators, adders, multipliers, artificial neurons, or
others. However, in this paper we only present gate level evolution, that involves
OR/AND gates, or in our example, look-up tables.

Basically, an unconstrained evolution could be executed with the entire con-
figuration bitstream, since it is impossible to create a short-circuit. However, 76
bits for each molecule signify a huge genome, if, for instance, we deal with a 10
by 10 array. Therefore, in many cases, only part of the bitstream will be evolved,
in order to reduce the search space.

The experiments made by Thompson using the Xilinx XC6200 are based on
the same principle of avoiding to evolve the entire bitstream. They only deal
with 18 bits per element, in order to evolve oscillators, for instance. The same
types of applications could be resolved with 22 bits using the POEtic chip.



4.2 Genome Representation

In the approach chosen in this paper, we evolve a system at the gate level,
by evolving the routing or the function of molecules. Therefore, it is natural to
directly evolve the configuration stream of the chip. Since there are 76 configura-
tion bits, and the bus has a width of 32 bits, only three words define a molecule.
In order to evolve routing and functionality, we do not want to evolve the entire
bitstream, but only part of it. By using very simple logical operations we can
modify the entire genome, without modifying fixed parts, as shown in figure 6.

In our example, the routing uses half of its capabilities, with the subset
shown in figure 3. The molecule inputs are the same as shown in figure 4, and
the operational mode is fixed to the 3-LUT mode. Therefore, the functionality
can be any 3 inputs function. This case corresponds to an evolution of the basic
cells of figure 5.

z
o
2
NO_in LUT =
EO_in
SOiln ™
WO0_in
- 588%
™ 5551
NO_in NO_in < NO_in
EO_in L} EO_in func_out
~ - i E
S0_in - func_out WO_out S0 in S0_in 0_out
WO0_in func_out = WO_in
[ ] cc 3 &
oo e
. | | Z W f_s =
NO_in
EO_in | |
S0_in
WO_in

S0_out

Fig. 5. The basic element, subset of the molecule, that can be evolved, defined by only
22 bits. Black boxes are configuration bits that are evolved.

The full genome is composed, for each molecule, of 96 bits (3x32), 76 defining
configuration bits. However, in our example, only 22 bits really represent infor-
mation used to define the phenotype, the 74 other bits being fixed. Compared to
the 18 bits used by Thompson with a XC6200, we deal with 4 more bits, because
we totally evolve the look-up table content, rather than just some multiplexers.
This way the genome is bigger, but each element has more flexibility.

In the evolution process, crossing-over and mutation will be applied to the
entire configuration stream, and the very simple logical operations will erase
parts of it with the fixed bits. This way, there is no need to use complex trans-
formation, from a smaller virtual bitstream to a real one, saving execution time.
Moreover, the fixed parts can be viewed like junk DNA in living beings, in which
a large part of the genome is simply unused.
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Fig. 6. This figure depicts the way a phenotype can be generated, from a variable
genome and a fixed part. A line represents the 3x32=96 bits where 20 are unused bits
and 76 are configuration bits of a molecule. These 76 bits are divided into the five
blocks described in table 1. The first line is the genome evolved using crossing-over
and mutation. The genome mask is used in a logical “and” operation with the genome.
It contains ’1’ at every place the genome is defined by the evolutionary algorithm.
Only 22 bits are relevant to define the phenotype: 8 bits for the switch box, 6 bits for
the molecular inputs, and 8 bits for the 3-input LUT. The fixed part, combined with
its mask (the inverse of the genome mask) corresponds to every configuration bits not
defined by the evolution. By simply using an “or” operation on the two results of “and”
operations, we obtain the phenotype that is the real configuration of the molecule.

5 Conclusion

In this paper we presented how the POEtic chip can be useful as an EHW
platform. The conjunction of a custom microprocessor and a reconfigurable array
is perfect to implement an on-chip evolution process. Moreover, compared to a
Xilinx Virtex II Pro where there is also a microprocessor, the advantage of
POEtic is the fact it is aware of the entire memory map of the configuration
bits, and that the microprocessor can configure the chip. Finally, compared to
a Xilinx XC6200, POEtic has the advantage of having a microprocessor inside,
allowing fast configuration of the reconfigurable array. Table 2 summarizes the
features of the XC6200, the Virtex II Pro, and POEtic.

At present, a test chip is being fabricated. After functional tests on this small
chip (it only contains the microprocessor and 12 molecules), the final POEtic
chip, containing about 200 molecules, will be designed and sent to fabric. As
soon as it is available, the concepts described in this paper will be tested with
the real hardware, to show the promising usefulness of the POEtic chip as a
powerful replacement of the Xilinx XC6200 for EHW.



Table 2. Comparison of features useful for EHW between a XC6200, a Virtex II Pro
and the POEtic chip.

Feature Xilinx Xilinx POEtic
XC6200|Virtex IT Pro
Impossible to short-circuit Yes No Yes
Processor inside No Yes Yes
Processor accessing the configuration bits| No No Yes
Bitstream detail available Yes No Yes
Dynamic routing No No Yes
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