Self-Replication Mechanism by Means of Self-Reconfiguration

Yann Thoma, Andres Upegui, Andres Perez-Uribe, and Eduardo Sanchez

HES-SO/HEIG-VD, Yverdon, Switzerland

email: {yann.thoma, andres.upegui, andres.perez-uribe, eduardo.sanchez } @heig-vd.ch

Abstract

Ontogenetic hardware, along with epigenetic (neural) hardware and phylogenetic (evolvable) hardware, are the key rep-
resentatives of a new hardware conception paradigm known as bio-inspired hardware. Ontogenesis is the process that
allows living beings to develop by means of mechanisms as growing, self-replication, and self-repair. During the last few
years, such ontogenetic mechanisms have been presented as a solution for the design of complex electronic circuits, with
the goal of coping with the increasing complexity envisioned for future nano-technology devices. This paper presents
an ontogenetic mechanism that allows a system, implemented in a reconfigurable device, to self-replicate, generating an
identical copy of itself, by partially self-reconfiguring the device containing it in a dynamic way.

1 Introduction

Nature has always stimulated the imagination of humans,
but it is only very recently that technology is allowing the
physical implementation of bio-inspired systems. They
are man-made systems whose architectures and emergent
behaviors resemble the structure and behavior of biolog-
ical organisms [3]. Artificial neural networks, evolution-
ary algorithms, and self-replicating systems, are some rep-
resentatives of a new, different approach to artificial life.
These techniques model, to different extents, natural pro-
cesses such as evolution, learning, development, or rea-
soning. They are intended to be tolerant of imprecision,
uncertainty, partial truth, and approximation.

Building bio-inspired hardware systems demand to con-
sider a set of paradigms different than those found in tra-
ditional hardware design techniques. The PERPLEXUS
project [1] (PERvasive computing framework for modeling
comPLEX virtually-Unbounded Systems) aims to tackle
this issue by developing a scalable hardware platform made
of custom reconfigurable devices endowed with bio-inspired
capabilities. This platform will enable the simulation of
large-scale complex systems and the study of emergent
complex behaviors in a virtually unbounded wireless net-
work of computing modules.

At the heart of these ubiquitous computing modules (ubid-
ules), we will use a custom reconfigurable electronic de-
vice capable of implementing bio-inspired mechanisms such
as growth, learning, and evolution. This ubidule bio-inspired
chip (ubichip) will be associated to rich sensory elements
and wireless communication capabilities. Such an infras-
tructure will provide several advantages compared to clas-
sical software simulations: speed-up, an inherent real-time
interaction with the environment, self-organization capa-
bilities, simulation in the presence of uncertainty, and dis-
tributed multi-scale simulations.

The ubichip will thus feature bio-inspired capabilities for
providing, among others, adaptation and fault-tolerance.
But, how to provide such a hardwired flexible modeling

framework? There exist several research fields deeply study-
ing and proposing computational models of specific as-
pects of biological systems. Neurocomputing, evolution-
ary computation, and fault-tolerant systems are some ex-
amples of them. However, modelling living beings implies
including them all in a single model, for which the POE
model proposes a well structured framework, which is also
well suited to the implementation of real systems.

If one considers life on Earth, one can distinguish three
levels of organization [7]: (1) Phylogeny, concerning the
temporal evolution of a certain genetic material in individ-
uals and species, (2) Epigenesis, concerning the learning
process during an individual’s lifetime, and (3) Ontogeny,
concerning the developmental process of multicellular or-
ganisms.

Analogous to nature, the space of bio-inspired hardware
systems can be partitioned along these three axes: phy-
logeny, ontogeny, and epigenesis; we refer to this as the
POE model [7, 8]. We consider each of the above axes
within the framework of the POE model as follows:

e The phylogenetic axis of bio-inspired systems, bet-
ter known as the field of evolutionary algorithms, is
the simplified artificial counterpart of phylogeny in
nature. If one consider the specific case of phyloge-
netic hardware, one finds the domain of evolvable
hardware [12].

e The ontogenetic axis involves the development of a
single individual from its own genetic material, es-
sentially without environmental interactions. Self-
replication and self-repair cellular systems are based
on the concept of ontogeny, where a single mother
cell gives rise, through multiple divisions, to a multi-
cellular organism. Ontogenetic hardware mainly in-
volves hardware implementations of self-replicating
and self-repairing cellular systems

o The epigenetic axis involves learning through envi-
ronmental interactions that take place after forma-
tion of the individual. Artificial Neural Networks

are the main representatives of this epigenetic pro-
cess, where the system’s synaptic weights change
through interactions with the environment. Epige-
netic hardware mainly involves neural hardware ar-
chitectures [13].

Within the domains collectively referred to as bio-inspired
systems, which often involves the solution of ill-defined
problems coupled with the need for continual adaptation
or evolution, the above paradigms yield impressive results,
frequently improving upon those of traditional methods.

For clarifying terms we will line-out some analogies be-
tween the reconfigurable logic and the biologically-inspired
terminology (Figure 1). We will consider a molecule to be
the equivalent of a logic cell, being part of a programable
logic cell array. Analogous to biology an organelle will
be considered as a set of molecules, where each organelle
has a specific task in the cell. Finally, a cell (very different
from a logic cell) will be considered as a set of organelles
performing a certain computation. In our case, two main
types of organelles will be considered within the cell: a
replication organelle and a computation organelle. A set of
cells will form a complete organism, which is equivalent to
the configuration of the whole device or several of them.

organism cell

FU |

Yvvy

LUT I FF -

molecule

organelle
Figure 1 Hierarchical decomposition of an organism.

A cell’s functionality is defined by a genome, which de-
scribes the complete organism. This genome provides the
genetic material that will be further expressed by the or-
ganism in the form of a phenotype as a function computa-
tion. In terms of reconfigurable hardware this genome is
equivalent to the logic cells’ configuration bit-string. For
the scope of this paper, the goal of the genome is to pro-
vide a description of the organism, and not to allow the
execution of any kind of evolutionary algorithm.

In this paper we introduce THESEUS (Theseus-inspired
Embedded SElf-replication Using Self-reconfiguration), and
we present the hardware mechanisms required for imple-
menting it. THESEUS focuses on the ontogenetic axis of
bio-inspired hardware, more precisely on self-replicating
cellular hardware systems. We present thus a hardware
mechanism that allows a cell to self-replicate by generating
a new cell described by the same genome. By successive
cellular replications the complete organism can be created.
Thanks to dynamic routing features [9] to be also included
in the ubichip (which are not described in this paper), the
new cell can be arbitrarily placed somewhere else in the
same circuit or in a different one.

2 Ontogenetic Hardware

Ontogenetic features correspond thus to the way an organ-
ism develops from a single cell to an entire body, as well
as to the capability of self-repair.

Our new platform will therefore logically allow for cellu-
lar development and self-repair. The idea behind these two
concepts is to let the reconfigurable part of the chip self-
organize, and to potentially support fault-tolerance mech-
anisms. The developmental features of a cellular organ-
ism basically require two processes: growth and differen-
tiation, which interact during the organism construction.
We give here the description of the developmental process,
derived from nature, to fully identify the requirements of
the reconfigurable circuit. Initially, a single cell is pro-
grammed in the circuit. This is done by an external agent,
that could be a microprocessor capable of configuring the
programmable elements. This single cell can then self-
replicate to start the construction of an organism. Keeping
in mind the concept of a genome present in every cell, this
genome can contain the number of cells of the organism,
and so the self-replication can manage to end up with the
correct number of cells. After the creation of the com-
plete organism, or when at least two cells ar present in
the circuit, a differentiation process is mandatory to let the
cells express a different functionality depending on, for in-
stance, their place in the organism (An example of differ-
entiation based on unique identifiers is described in [5]).
When all cells have been created and differentiated, the ar-
tificial organism is ready to operate, and can be considered
as a fully functional system.

The configuration mechanism used by this developmental
algorithm can be exploited by another interesting feature:
self-repair. A genome in every cell means that a faulty cell
could be replaced by another one, simply by creating a new
cell and by differentiate it.

Both processes of self-replication and self-repair require
replication and differentiation. While differentiation can
act at system level, to simply express a particular function-
ality depending on some factors, replication requires spe-
cific hardware mechanisms. In section 3 we describe the
mechanism used by THESEUS, without considering the
problem of differentiation mechanisms that would be built

on top of the reconfigurable platform.

2.1 Replication

In order to implement cellular growth or self-repair, some
parts of the circuit must be replicated. It could be an entire
cell, or part of a cell, and for both cases there must be a
unit responsible for the control of the replication. Previous
work on replicating circuits have been done with the PO-
Etic chip [2, 6, 10]. However, in POEtic, replication was
possible with two limitations:

1. A configuration path had to be preconfigured in the
receiving molecules. This path determined the cel-
lular morphology.

2. Two reconfiguration units had to be loaded in the
circuit by the microprocessor, one for the replicat-
ing cell, and one for the creation of the new cell.

While being quite useful for growth and self-repair, simple
replication is limited in the sense that the circuit has to be
preprogrammed to accept this replication. A full replica-
tion, without any requirements will therefore be a plus in
our new PERPLEXUS device.

2.2 Self-replication

The concept of self-replication, in the case of a reconfig-
urable circuit, is illustrated by the following example:

We have to configure a section of the circuit that we will
call a cell. Then, based on ontogenetic processes, this cell
will self-replicate, by creating a real copy of itself some-
where else on the reconfigurable array. The main advan-
tage of self-replication over replication is that there is no
need to prepare the remaining part of the reconfigurable ar-
ray, and that it would be possible to create a Von Neumann
universal constructor [11]. The difference with the realiza-
tion of Von Neumann is that instead of using a tape describ-
ing the constructor, the replication is performed through
self-inspection of the cell.

In the Von Neumann cellular automata, a universal con-
structor is composed of a functional part and a tape con-
taining its description. The replication process acts in two
steps: (1) the functional part creates a copy of itself by
using the tape information, and (2) the cell duplicates the
tape and inserts it at the same relative place to the new
functional part.

The concept of self-inspection acts in a different way. In-
stead of using a tape describing the cell, the replication di-
rectly inspects the content of the cell. In the case of recon-
figurable circuits, this content corresponds to the config-
uration bits of the reprogrammable elements. The advan-
tage of this approach is that there is no need to duplicate
information, because the cell content is directly scanned.
However this gain in term of data storage leads to a more
complex hardware, capable of supporting this inspection.
Considering the limitation of simple replication, the ar-
chitecture of the PERPLEXUS chip will allow to perform
real self-replication. This self-replication process can be
viewed at three different abstraction levels:

1. At organism level, a cell simply creates a copy of
itself.

2. At cellular level, cellular structure is decomposed
in three organelles, mandatory to further analyse the
requirements of a self-replication by self-inspection.

3. Finally, at molecular level, special hardware mech-
anisms are needed to allow the implementation of
real self-replication.

The self-replication at organism level corresponds to the
high-level vision of the self-replication - i.e. the final goal
of our mechanism - and does not require more description.
The molecular level will be treated in detail in section 3,
and we here propose a description of self-replication at cel-
lular level.

2.3 Self-replication at cellular level

In a general way, self-replication implementations can be
considered at different levels of abstraction. It is not easy
to define a level where everyone is satisfied. A good ex-
ample of this is the case of self-replicating robots, where a
robot must build its exact copy after providing him the nec-
essary building blocks. The highest level can be considered
as a robot able to assemble two blocks: a battery and an
unpowered robot. The result from this assemblage will be
a functional robot. On the other extreme we find the lowest
level case: the unrealistic scenario where a robot builds its
exact copy by assembling atoms from scratch.

In the world of configurable digital systems one can also
envision two extreme cases. The highest level can be an
FPGA able to configure another FPGA with the same con-
figuration bitstream. And the lowest level can be a logic
cell able to fully configure its neighbor logic cells with
its own configuration, and still provide a differentiation
mechanism allowing it to perform any useful computation.
While the lowest level approach could lead to an easy use
of such mechanisms by an end user, it would impose an
impressive hardware overhead.

In our case, we consider an intermediate level where a
molecule contains the basic functionalities required for the
self-inspection process, letting the control to be executed
by other molecules not affected by this self-inspection. This
approach implies also a less important hardware overhead.
Its basic problem, if there is no duplicated information in
the cell, is that it is not possible to replicate itself while
managing its own replication. A subdivision of the cell is
therefore needed to allow decomposition of the replication
process.

We split the cell into three organelles, as shown on figure 2:
a functional unit (FU), and two replication units (RU0 and
RU1) responsible for the self-replication process.

The self-replication algorithm is decomposed into three
steps:

1. RUO creates a copy of RU1 somewhere on the re-
configurable array. The choice of the place where
to put RU1 is not considered in this paper, as it
is closely related to the dynamic routing algorithm

Step 1 Step 2 Step 3

FU FU

Sending/ RUO

receiving
configuration

Being
duplicated/
created

Figure 2 Self-replication process divided in three phases.

that will be included in a further work.

2. RUI creates a copy of RUO, by connecting to the
newly created RUI.

3. RUO creates a copy of FU, by connecting to the
newly created RUO.

This algorithm, while being quite simple, requires special
hardware support (for instance, in the POEtic chip, it was
not possible to implement it):

1. Connections have to be created at runtime, letting
the old cell connect to the new one, to send the con-
figuration bitstreams. This mechanism could corre-
spond to the dynamic routing.

2. The programmable elements have to allow for a self-
inspection process to retrieve all the configuration
bits, and to allow the creation of the configuration
path (the way the new cell is created).

2.4 Tom Thumb algorithm

Previous work on self-inspection algorithms for self-repli-
cating systems has been done by Mange and his team with
the Tom Thumb algorithm [4]. They define a cell as a set of
molecules, each molecule has four memory positions, and
each position stores a hexadecimal character. They define
also a minimal cell that consists of 4 molecules organized
as an array of 2 x 2, which implements 16 hexadecimal
characters. However, only eight hexadecimal characters
are needed for specifying the genome of such minimal cell,
and the remaining eight are redundant data used for facili-
tating the self-inspection process.

These hexadecimal characters can contain two types of in-
formation: (1) the molcode data is the molecule code data
used for configuring the artificial organism by defining the
molecule’s functionality, and (2) the flag data that defines
the morphology of the cell by indicating which is the next
molecule to be configured by the genome-string. The full
genome is constituted by a number of molcode and flag
characters (four of each for the minimal cell), arranged in
a 1-d string in a manner that every odd character is a flag
and every even character is a molcode.

The cell is then constructed by shifting the genome from
left to right into the first molecule. When the first molecule
is filled (after 4 iterations), the flag at the fourth position
indicates where to continue building the cell, and the mol-
code stored at the third position becomes active, determin-

ing the molecule configuration. A link is created from the
second position to the next molecule (i.e. the one indicated
by the fourth flag), which is built in the same way. At the
end, the loop must be closed by ending up in the initial
molecule, and the cell is done.

For allowing the cell to self-replicate, it must be endowed
with self-inspection capabilities. Because of this, the genome
is shifted-in twice. The first genome will be stored in the
fourth and third positions of each molecule for expressing
the cell’s functionality, and the second genome will con-
tinue shifting across the loop. This looping information is
the one that will be copied for replicating the cell. In this
manner, one of the flags creates a new link for building a
complete new cell, that will contain the same configuration
information that the original one. For more details on the
algorithm, please refer to [4].

It must be noted that the implementation of the Tom Thumb
algorithm in a reconfigurable device implies an important
hardware overhead of more than twice the number of con-
figuration bits. Keeping in mind the area constraint this
overhead is not acceptable for our specifications, since the
resources used for implementing the configuration regis-
ters represents an important area percentage on the whole
chip, therefore we propose another self-replication mecha-
nism.

3 Theseus mechanism

The process of self-replication requires different mecha-
nisms on the replicator and replica side. The replicator
needs to inspect itself to retrieve its genome, while the
replica needs to create itself. We start with the explana-
tion of the creation mechanism, and we continue with the
self-inspection.

3.1 Organelle construction

The reconfigurable array is intrinsically a distributed sys-
tem, each molecule functioning in parallel with the oth-
ers. In a standard device, an external agent is responsible
to load a configuration bit-string describing the entire cir-
cuit at startup. Keeping in mind the nano-technology chal-
lenges, one being how to program a huge array of small
reconfigurable elements, the idea behind ontogenetic hard-
ware is to only configure a part of the circuit, letting this
artificial organism to grow on the electronic substrate. So,
the reprogrammable array itself has to manage the dynamic
incremental configuration of the cellular array. For this
purpose we borrowed an idea from the Tom Thumb al-
gorithm in order to manage the morphogenetic develop-
ment of cell’s organelles by creating a configuration path.
The idea we borrowed is the way a flag is loaded into a
molecule and serves then to indicate where to continue the
cell construction.

Basically, the path serving to define the shape of the or-
ganelle is serially configured, and the configuration bits
describing the functional part of the molecules are further
sent. The path creation requires thus the use of special flags

that can take one of six possible values, described in table
1. Among these flags there is one for each direction, one
to indicate the end of the building path, and a last one in-
dicating an empty molecule that corresponds to the initial
unprogrammed state.

’Flag \ H-flag \ Signification ‘

1 f |develop to the North

— | = |develop to the East

! | |develop to the South

«— | <« |develop to the West

— = |stop development

o © |empty molecule
Table 1 Molecular flags

We insist here the difference between a flag and a h-flag.
The flag is used for indicating where to continue the or-
ganelle morphogenesis. However, as the configuration is
performed serially, the molecule has to detect when its flag
has been received. A header is therefore used for this pur-
pose. This header corresponds to a ’1” sent before the flag,
and so a h-flag corresponds to the flag data preceded by a
’1’. An empty h-flag is logically coded by a chain of ’0’, a
requirement for any unused molecule. This state has to be
forced during system reset for allowing the mechanism to
receive the configuration information.

An organelle’s morphology is thus described by a list of
molecular h-flags:

HF(org) = [hf(mo), hf(m1),---, hf(mn_1)]

If we consider the examples of figure 3, the h-flags of orgg
are:

HF(orgo) = [hf(mo),hf(mq),hf(ms),hf(ms)]
= [f,=,1,4]

and the h-flags of org; are:

HF(Orgl) = [ﬂ7 ﬂa ﬂ7 =, U, liv Uv =, ﬂa ﬂ7 ﬂa =, Uv U» Ua :|]

We can observe that, unlike the Tom Thumb algorithm, the
path doesn’t need to create a loop, since the path is built as
the Ariadne’s thread. This feature can lead to the construc-
tion of an organelle of any shape, not only rectangles.

When the morphology path is built, the configuration bits
of the functional part of the molecules can be sent in a
serial manner, the storage of these bits correspond thus to
a shift register. However, the order in which the molecular
functionality configuration is sent is the inverse as that for
the flags. The complete construction process is depicted in
figure 4, where the configuration bits of molecule 3 are the
first to be sent, the ones of molecule O are the last ones. As
the mechanism we propose can be integrated in any kind
of reconfigurable circuit, the number of configuration bits

3 4 9 10
1 2 2 5 8 11
0 3 1 6 7 12
org
0 15 14 13
org

Figure 3 Possible paths for different organelle shapes

of a molecule is not relevant, and we simply represent it by
c¢(m;) for the i™ molecule. The set of configuration bits of
an organelle can therefore be described by a list C'(org):

C(org) = [c(mn_1),c(my_2),- -, c(mg)]

The information contained in F'(org) allows for the cre-
ation of the cell morphology, and the data in C'(org) are
the configuration bits of the cell. The concatenation of
these two lists completely describes the organelle. This
complete description corresponds to the genome G(org),
and can be used for serially configuring the circuit:

G(org)

[HF(org),C(org)]
[hf(m0)> hf(m1)7 T hf(mnfl)a

c(mn—1),c(mn_2),---,c(mo)]

As an example, figure 4 presents the eight steps of the cre-
ation of a 4-molecules organelle described by the genome

G(OTQ) = [ﬂ7 =,|,4, C(m3)’ C(mg), C(ml)v C(mo)]

3.2 Self-inspection

The simple construction of an organelle is not a very com-
plicated task. However, the retrieval of its description by
means of self-inspection requires more careful attention.
The creation of an exact copy of the organelle requires the
to be able to recover the genome in the exact order that
it was sent. So the result of pulling the Ariadne’s thread
must be the obtention of the same genome G(org), that
has been previously introduced. Our solution to this prob-
lem is to virtually create a shift register following the path
used for the cell shape creation, and to traverse it in both
directions.

Figure 5 shows the path used to retrieve the genome for
the example of the 4-molecule organelle. By shifting the
entire information (the flags and the configuration bits) the
retrieval can be performed in the same number of clock cy-
cles than the organelle creation. As it can be observed in

/Step 1 N\ (Step2 R
—
1 2 1 2
" * 0 3 i * 0 3
\ DN %
/Step 3 [Step4 R
— —
1 +2 1 +2
! * 0 3 | * 0 _|3
o 2N %
/“Step 5 N\ [Step6 R
— —
1 *2 c(3) +2
” c(3)*0 _|3 ” 0(2)*0 _|3
o 2N %
/Step 7 "\ /Step8 R
c(:)>1 c(3)+2 c(_1)>1 () +2
” c(1)*0 _|3 " c(O)*o C(3)_|3
L DN %

Figure 4 Creation of a 2 x 2 organelle, decomposed into 8
steps.

figure 5, the flags contain sufficient information to define
the path. For instance, molecule 1, with its flag, knows
where to send the configuration bits and from where the
flags arrive, and molecule O can indicate, through a dedi-
cated signal, that it is the source of the configuration bits
for molecule 1, as well as the destination of the flags. How-
ever, while this shift register seems to be an excellent solu-
tion, it requires some special hardware, in order to keep the
path unchanged for a simple reason: if the flag is shifted,
then the path is destroyed.

One must thus store, in the molecule, a copy of the flag that
will remain unchanged during the self-inspection process.
This ensures that during self-inspection the path will not be
destroyed. The storage of this extra flag implies a hardware
overhead of 3 flip-flops, which is very small compared to
the size of the molecule.

Figure 6 shows the flag registers, the configuration bits,
and the path created by the flags during the construction
of the organelle. The control system, which for the sake
of simplicity is not represented here, is mainly composed
of multiplexers to select the origin of the serial bits and of
demultiplexers to indicate where to send these bits further.

v v

o) = |c@ ¥

A 1 A2
Y Y

~c(0) | 4 c(3)» -

' 0 3

Figure 5 The path used to retrieve the genome of the or-
ganelle

The registers’ shift-enable is controlled by combinatorial
logic that depends of the header-bit of the shifting-flag reg-
ister. When this header-bit equals ’0’ both flag-registers
shift, while the configuration bits are disabled. When the
header-bit equals "1’ - i.e. when the flags registers are con-
figured - then the configuration bits are shifted during the
rest of the process.

During the self-inspection process, the fixed flags indicate
exactly the directions of the path, the other registers shift-
ing serially their contents, as presented in figure 7.

After an organelle replication, the content of the configura-
tion bits and the flags must recover its original state. This
can easily be guaranteed by reinserting the genome in the
organelle. So, at every clock cycle, the retrieved bit is for-
warded. In our example, the west output of molecule 0 will
be directly connected to its west input.

Shifting flag Configuration bits
Fixed 7
flag un

il
:

$T]

Figure 6 Register paths during the construction of an or-
ganelle.

]

Figure 7 Register paths during the inspection of an or-
ganelle.

4 Setup and Results

4.1 Validation setup

For validating our self-replication mechanism we imple-
mented a molecular array. Each molecule is configured by
a small configuration bit-string of 80 bits which is stored
in the configuration register. The functionality described
by this configuration bit-string is irrelevant for the self-
replication process. The number of 80 configuration bits
has been arbitrarily chosen, and corresponds approximately
to the number of configuration bits required for a molecule
composed of a 4-input LUT, a flip-flop, 4 input multiplex-
ers and a switchbox.

We configured the molecule array with a configuration bit-
stream that describes a 4-molecule organelle arranged 2 x
2. It must be noted that, unlike the Tom Thumb algorithm
introduced in 2.4, this is not our minimal cell. Our mech-
anism allows to have a minimal organelle composed of a
single molecule, and the minimal cell size will be further
determined by the replicators’ implementation.

The 4-molecules organelle will be thus described by a genome

of the form: [}, =, ||, =, ¢(m3), c(m2), c(m1), c(myp)]. The
four first characters are the 4-bit flags that denote the cell
morphology. The last four characters contain the config-
uration information of each of the four molecules, being
each character an 80-bit configuration bitstream. The total
size of the configuration string is thus 4 x (4 + 80) = 254
bits, among which only 16 bits are used as flags.

The system was described in VHDL at the RTL level and
has been simulated with ModelSim. The self-replication
process has been validated by configuring the molecule ar-
ray with the aforementioned genome. The genome has cor-
rectly configured the organelle in the molecule array in 254
clock cycles. The self-inspection mechanism has allowed
to correctly recover the genome, in the same number of
clock cycles, for configuring a second organelle.

4.2 Synthesis results

The implementation of the full system comprising the con-
figuration registers, along with the self-replication mech-
anism, required a total amount of 384 transistors and 87
flip-flops . This number has been calculated based on the
schematics generated by Synplicity. It will be refined in
the future, after the realization of the physical circuit.

As the size of registers is very important, regarding the
transistors size, we can consider, for a molecule of 80 con-
figuration bits, that the overhead will be around 10% of the
total silicon area. This percentual overhead can be consid-
erably reduced when including the logic cell’s functional-

ity.

5 Conclusions and Further Work

In this paper we presented THESEUS, a self-replication
hardware mechanism for designing systems able to grow
by means of cellular self-replication. In this way, by us-
ing a relatively small configuration bitstream (describing
a single cell), it is possible to generate a complete highly
complex organism composed of several cells. Cell differ-
entiation mechanisms will be further included at a higher
level.

The presented mechanism can also be useful for design-
ing fault-tolerant circuits. The dynamic nature of our self-
replication mechanism allows it to be used in hostile envi-
ronments that may damage the device. The self-replication
mechanism can allow a cell to repair another cell by simply
rewriting its configuration if it has been (partially or com-
pletely) erased, or by re-constructing it in a different set of
molecules if transistors have been physically damaged.
The silicon overhead required for implementing our self-
replication mechanism remains completely acceptable. It
only requires 7 registers and a small amount of logic gates,
what is not a high cost compared to the amount of transis-
tors required for building the functional part of a molecule.
This typically corresponds to a 10% overhead for a molecule
similar to the one of POEtic, and is reduced with the growth
of the reconfigurable element.

The ubichip’s logic cell architecture is still to be specified.
However, the proposed self-replication mechanism will ap-
ply to any cellular architecture independent of the level of
granularity.

There are still some open issues to develop before the sili-
con implementation of the mechanism:

e During self-inspection and configuration the cell can-
not perform its functionality: the bitstream is being
shifted across the cell’s configuration register pro-
ducing invalid circuits. Must cell’s functionality be
disabled during this self-inspection process? If yes,
how to disable it?

e Cellular death makes part of the ontogenetic pro-
cess. The current self-replicating system allows to
give birth to a cell, but cell’s destruction is not still
supported. The implementation of such destruc-

tion mechanism would be interesting for increasing
molecules’ reusability.

The presented mechanism assumes that there are
enough empty molecules available for building the
cell. It will be necessary to include a mechanism
that allows to incrementally verify molecule avail-
ability, and to interrupt the cell’s construction if not.
The replicator is not a silicon embedded circuit, but
a system implemented on top of the reconfigurable
logic. A compact replicator architecture is still to
be defined in function of the logic cell chosen.

As the replicator, the differentiation mechanism is
a system implemented on top of the reconfigurable
logic. Several differentiation mechanisms can be
explored depending on the targeted cellular func-
tionality.

Acknowledgements

This project is funded by the Future and Emerging Tech-
nologies programme IST-STREP of the European Com-
munity, under grant IST-034632 (PERPLEXUS). The in-
formation provided is the sole responsibility of the authors
and does not reflect the Community’s opinion. The Com-
munity is not responsible for any use that might be made
of data appearing in this publication.

6 References

[1]
(2]

[7]

PERPLEXUS webpage. http://www.perplexus.org.
W. Barker, D. M. Halliday, Y. Thoma, E. Sanchez,
G. Tempesti, J.-M. Moreno, and A. M Tyrrell. Fault
tolerance using dynamic reconfiguration on the po-
etic tissue. 2007. To be published.

C. G. Langton. Artificial life : an overview.
Complex adaptive systems. MIT Press, Cambridge,
Mass., 1995.

D. Mange, A. Stauffer, E. Petraglio, and G. Tem-
pesti. Self-replicating loop with universal construc-
tion. Physica D, 191(1-2):178-192, apr 2004.

D. Roggen, Y. Thoma, and E. Sanchez. An evolving
and developing cellular electronic circuit. In J. Pol-
lack et al., editors, Proc. Ninth International Con-
ference on the Simulation and Synthesis of Living
Systems (ALIFE9), pages 33-38, Cambridge, Mas-
sachusetts, USA, 2004. The MIT Press.

J. Rossier, Y. Thoma, P.-A. Mudry, and G. Tem-
pesti. MOVE processors that self-replicate and dif-
ferentiate. In A.J. Ijspeert et al., editors, Proc. Bi-
ologically Inspired Approaches to Advanced Infor-
mation Technology (BioADIT 2006), number 3853
in LNCS, pages 160175, Berlin Heidelberg, 2006.
Springer-Verlag.

E. Sanchez, D. Mange, M. Sipper, M. Tomassini,
A. Perez-Uribe, and A. Stauffer. Phylogeny, on-
togeny, and epigenesis: Three sources of biological
inspiration for softening hardware. In T. Higuchi,
M. Iwata, and W. Liu, editors, Evolvable Systems:

(8]

[9]

[10]

(11]

(12]

[13]

From Biology to Hardware, volume 1259 of LCNS,
pages 33-54, Berlin, 1997. Springer-Verlag.

M. Sipper, E. Sanchez, D. Mange, M. Tomassini,
A. Perez-Uribe, and A. Stauffer. A phylogenetic, on-
togenetic, and epigenetic view of bio-inspired hard-
ware systems. IEEE Transactions on Evolutionary
Computation, 1(1):83-97, 1997.

Y. Thoma and E. Sanchez. An adaptive FPGA
and its distributed routing. In Proc. ReCoSoc "05
Reconfigurable Communication-centric SoC, pages
43-51, Montpellier - France, June 2005.

Y. Thoma, G. Tempesti, E. Sanchez, and J.-M.
Moreno Arostegui. Poetic: An electronic tissue
for bio-inspired cellular applications. BioSystems,
74(1-3):191-200, August-October 2004.

J. von Neumann. Theory of Self-Reproducing Au-
tomata. University of Illinois Press, Illinois, 1966.
Edited and completed by A. W. Burks.

X. Yao and T. Higuchi. Promises and challenges of
evolvable hardware. IEEE Trans. on Systems, Man,
and Cybernetics — Part C: Applications and Reviews,
29(1):87-97, 1999.

J. Zhu and P. Sutton. FPGA implementations of
neural networks - a survey of a decade of progress.
In P.Y.K. Cheung, G.A. Constantinides, and J.T.
de Sousa, editors, Proc. of the 13th International
Conference on Field Programmable Logic and Ap-
plications (FPL’03), number 2778 in LNCS, pages
1062-1066, Berlin, Heidelberg, September 2003.
Springer Verlag.

