
The Perplexus bio-inspired reconfigurable circuit

Andres Upegui, Yann Thoma,

Eduardo Sanchez, Andres Perez-Uribe

HEIG-VD, Yverdon-les-Bains, Switzerland

(andres.upegui, yann.thoma, eduardo.sanchez,

andres.perez-uribe)@heig-vd.ch

Juan Manuel Moreno, Jordi Madrenas

UPC, Barcelona, Spain

(moreno, madrenas)@eel.upc.edu

Abstract

This paper introduces the ubichip, a custom recon-

figurable electronic device capable of implementing bio-

inspired circuits featuring growth, learning, and evolution.

The ubichip is developed in the framework of Perplexus,

a European project that aims to develop a scalable hard-

ware platform made of bio-inspired custom reconfigurable

devices for simulating large-scale complex systems. In this

paper, we describe the configurability and architectural

mechanisms that will allow the implementation of evolv-

able and developmental cellular and neural systems in an

efficient way. These mechanisms are dynamic routing, self-

reconfiguration, and a neural-friendly logic cell’s architec-

ture.

1. Introduction

The Perplexus project [12] aims to develop a scalable

hardware platform made of custom reconfigurable devices

endowed with bio-inspired capabilities. This platform will

enable the simulation of large-scale complex systems and

the study of emergent complex behaviors in a virtually un-

bounded wireless network of computing modules.

The Perplexus platform will consist thus in a scal-

able network of ubiquitous computing modules (ubidules)

equipped with wireless communication capabilities and rich

sensory elements. The platform will be modular for allow-

ing the application developer to customize his platform set-

up. In this way the application developer can easily build his

system setup by selecting what to plug to the ubidule from a

set of peripherals. These peripherals can be different com-

munication interfaces (wifi, bluetooth), sensors, actuators,

cameras, or flash memories. This modularity is guaranteed

by the use of standard interfaces such as USB.

At the heart of these ubidules, we will use a custom

reconfigurable electronic device capable of implementing

bio-inspired mechanisms such as growth, learning, and evo-

lution. These bio-inspired mechanisms will be possible

thanks to reconfigurability mechanisms like dynamic rout-

ing, distributed self-reconfiguration, and a simplified con-

nectivity. Such an infrastructure will provide several advan-

tages compared to classical software simulations: speed-

up, an inherent real-time interaction with the environment,

self-organization capabilities, simulation in the presence of

uncertainty, and distributed multi-scale simulations. Our

modeling framework will be tested on three application do-

mains: biologically-plausible developing neural networks

modeling, culture dissemination modeling, and cooperative

collective robotics [12].

Recent work in this field is the POEtic tissue [16], a re-

configurable hardware platform for rapidly prototyping bio-

inspired systems that employ POE principles [13], which

has been developed in the framework of the European

project POEtic. The POEtic chip has been specifically de-

signed to ease the development of bio-inspired applications.

The limitations exhibited by the POEtic tissue suggest

several architectural and configurability features to be im-

proved. These improvements may lead us to a reconfig-

urable platform better suited for supporting the bio-inspired

principles that we want our devices to mimic.

Before discussing the hardware mechanisms that will be

considered for the design of our ubichip, in section 2 we

will introduce some concepts and issues concerning bio-

inspired hardware, also known as POE hardware [13], and

we will also present the desired bio-inspired features to be

supported by the ubichip. Then, in section 3, we will de-

scribe the hardware mechanisms that will allow the imple-

mentation of such bio-inspired systems.

2. POE Hardware

Living beings, unlike engineered systems, exhibit a high

level of adaptability and robustness thanks to several bi-

ological mechanisms: reproduction, learning, self-repair,

growth, and evolution. It would be thus desirable to in-

clude such mechanisms in human-designed systems in or-

Second NASA/ESA Conference on Adaptive Hardware and Systems(AHS 2007)
0-7695-2866-X/07 $25.00  © 2007



der to increase their lifetime and to improve their adaptabil-

ity to the environment and to the user. If one considers life,

as we know it, the following three levels of organization

can be distinguished [13]: (1) Phylogeny, concerning the

temporal evolution of a certain genetic material in individu-

als and species, (2) Ontogeny, concerning the developmen-

tal process of multicellular organisms, and (3) Epigenesis,

concerning the learning process during an individual’s life-

time. Analogous to nature, the space of bio-inspired hard-

ware systems can be partitioned along these three axes, to

which we refer as the POE model.

When we refer to the phylogenetic axis of bio-inspired

hardware systems, we are talking about ”Evolvable Hard-

ware” (EHW). EHW makes use of evolutionary algorithms

in order to define a description of a hardware system. From

a desired behavior specification of a circuit, an evolutionary

algorithm will search for a circuit configuration describing

a satisfactory solution to the specification. If one examines

the work carried out to date under the heading EHW, one

can identify four taxonomic subdivisions according to the

level of bio-inspiration: extrinsic, intrinsic, complete, and

open-ended evolution [13]. The ubichip must provide thus

the capabilities for performing each of the aforementioned

levels of evolution. The capability of evolving at these four

levels will allow our ubidules to evolve, in a completely au-

tonomous way, under a real-time interaction with the envi-

ronment and under the presence of uncertainty.

The ontogenetic axis comprises several mechanisms of

high interest for inclusion in human-designed systems.

Self-replication and self-repair are two key characteristics

of living beings that are still far from being exploited by

engineered systems with an efficiency comparable to na-

ture. However, some key factors from multicellular beings

have been identified for use in the design of ontogenetic ma-

chines: the dependence of cell’s functionality upon its rela-

tive position, the relevance of the physical neighborhood for

chemical interactions between cells, the importance of time

scales during cellular reproduction, and the fundamental

role played by protein’s regulation and cell’s differentiation,

which is driven by regulatory and differentiation genes. Re-

search projects as Embryonics [6] (embryonic electronics)

and POEtic [1, 10, 11] have studied the issues related to

hardware implementations of such mechanisms.

The epigenetic axis of bio-inspired hardware systems

mainly refers to hardware implementations of artificial neu-

ral networks, also known as ”neural hardware”. Most neu-

ral models are conceived for being implemented in software

platforms, making them unsuitable for hardware implemen-

tations. These models don’t take care about data resolution,

floating point operations overhead, or multiplications, since

their overall overhead in software is negligible or nonexis-

tent. These aspects turn out to be very expensive when one

considers their implementation as a hardware architecture.

Some previous works have focused on optimizing the im-

plementation of such types of models, and other works have

focused on proposing original models that exploit better the

hardware specificity of the implementation [9, 18].

The implementation of such bio-inspired features on a

hardware substrate requires some special hardware mecha-

nisms to be provided by the underlying reconfigurable ar-

chitecture. These mechanisms must allow an efficient use

of hardware resources when designing POE circuits.

3. Ubichip mechanisms

The system architecture envisioned for the ubichip is

represented in figure 1, and it is composed of four main

parts. (1) The encoder/decoder is in charge of managing the

shared address bus that implements the inter-chip communi-

cation with an address event representation (AER) scheme

(to be further explained in subsection 3.4). (2) The memory

controller takes care of handling the data RAM needed to

store system parameters as well as the CAM (Content Ad-

dressable Memory) that will be used to implement the AER

communication scheme between neurons. (3) The system

manager handles the overall configuration of the ubichip

and its interface with the main controller of the ubidule. For

the neurobiological modeling application, it is envisioned

to implement a SIMD-like solution with a centralized se-

quencer and a set of reconfigurable neural units. The se-

quencer included in this subsystem interprets the code cor-

responding to the execution of the neurons to be imple-

mented in the configurable section of the ubichip. A small

instruction set has been specifically designed for this se-

quencer. This instruction set is general enough to permit

the implementation of any parallel system. Furthermore, it

includes conditional store instructions so as to permit a lin-

ear execution of the code, thus improving the concurrence

of the system. Finally, (4) the configurable array consists in

a bi-dimensional regular array of elementary reconfigurable

cells.

Figure 1. System Architecture of the ubichip.

Second NASA/ESA Conference on Adaptive Hardware and Systems(AHS 2007)
0-7695-2866-X/07 $25.00  © 2007



ACC

R0 R1 R6

opcode
3

4

opcode

2
status

Figure 2. Configurable cell in 4bit ALU mode.

Bioinspired circuits require a number of reconfigurabil-

ity and architectural features in order to be implemented in

an efficient way. In this section we describe the hardware

mechanisms that will allow the ubichip to implement cir-

cuits able to adapt by means of evolution, development, and

learning.

3.1 Neuralfriendly Architecture

Among the applications being targeted in Perplexus,

the neurobiological modeling application imposes the more

critical computing power requirements. In the specific neu-

ral application considered within the framework of Per-

plexus [4, 5], the hardware platform should be able to simu-

late the functionality of a spiking neural network constituted

by 10000 neurons, and each neuron establishes on average

300 synaptic connections with other neurons.

A careful analysis has been carried out in order to define

the internal organization of the reconfigurable cells, in or-

der to allow an efficient implementation of such neural net-

work. Taking into account the trade-off to be achieved be-

tween the integration density and the granularity of the ba-

sic cells, it has been decided to define their structure around

four 4-LUT units that can be configured as four independent

4-input functions or as a 4-bit ALU. This 4-bit ALU will al-

low the implementation of the neural processing units that

will be controlled by the sequencer. The memory elements

required to implement the LUT units will be designed so

that they can also be used as an 8 x 4-bit register file for

the ALU, so as to optimize the implementation of the arith-

metic and logic instructions. The architecture of a basic cell

in 4-bit ALU mode is depicted in figure 2.

The neural-friendly architecture is provided thus in the

form of a reconfigurable unit array that can be configured

as an efficient neural SIMD multiprocessor. A single 4-LUT

logic unit can act as a 4-bit SIMD processing element (PE),

or it can be assembled to neighbor units to form an n-bit

PE (being n a multiple of 4). A neural-oriented instruction

set, specifically defined for these PEs, guarantees an optimal

implementation of spiking neural systems, allowing a single

processing element to compute a plurality of neurons and

synapses.

3.2 Selfreconfiguration

Ontogenetic features correspond to the way an organ-

ism develops from a single cell to an entire organism (self-

replication), as well as to the capability of self-repair. Both

processes of self-replication and self-repair require cellular

replication and differentiation. Although differentiation can

act at system level to simply express a particular function-

ality depending on some factors, self-replication requires

specific hardware mechanisms.

Our concept of self-replication considers the case of a

given circuit, lets call it a cell, configured on a reconfig-

urable array of logic units, lets call them molecules. This

cell is able to self-replicate, by creating a complete and ex-

act copy of itself somewhere else on the reconfigurable ar-

ray. In our case, self-replication is performed by means of

self-inspection [7]. The self-inspection concept performs

the replication by directly self-inspecting the content of the

cell in order to replicate it somewhere else. In the case of a

reconfigurable circuit, this content corresponds to the con-

figuration bits of the reprogrammable elements. The advan-

tage of this approach is that there is no need to duplicate

information, because the cell content is directly scanned.

This gain in terms of data storage leads to a more complex

hardware, capable of supporting this inspection.

In our self-replication process, we split the cell into three

organelles, each performing a different function in the cell

during self-replication, as shown in figure 3: a functional

unit (FU), and two replication units (RU0 and RU1) respon-

sible for the self-replication process.

The self-replication algorithm is decomposed into three

steps: (1) RU0 creates a copy of RU1 somewhere on the

reconfigurable array, (2) RU1 creates a copy of RU0, and

(3) RU0 creates a copy of FU, by connecting to the newly

created RU0.

This algorithm, while being quite simple, requires spe-

cial hardware support (for instance, in the POEtic chip,

it was not possible to implement it): connections have

to be created at runtime, molecules have to allow for a

self-inspection process to retrieve configuration bits, and

molecules have to allow also the creation of the configu-

ration path in order to determine the cell’s morphology.

This process of self-replication requires specialized con-

figurability mechanisms on the replicator and replica side.

The replicator cell needs to inspect itself to retrieve its con-

figuration bits, while the replica needs to build itself.

Second NASA/ESA Conference on Adaptive Hardware and Systems(AHS 2007)
0-7695-2866-X/07 $25.00  © 2007



FU

RU0

RU1

RU1

FU

RU0

RU1

RU1

RU0

FU

RU0

RU1

RU1

RU0

FU

Sending/

receiving 

configuration

Being 

duplicated/

created

Step 1 Step 2 Step 3

Figure 3. Selfreplication principle.

For this purpose, we propose the THESEUS mechanism

(standing for Theseus-inspired Embedded SElf-replication

Using Self-reconfiguration) in order to build the cell [17].

In THESEUS, an organelle is defined by a genome that is

composed of 2 parts: (1) a set of special flags for defining

the cell’s morphology and (2) the configuration for each of

the molecules forming the cell. We have borrowed an idea

from the Tom Thumb algorithm [7] in order to manage the

morphogenetic development of cell’s organelles by creating

a configuration path. The idea we borrowed is the way a

flag is loaded into a molecule and serves then to indicate

where to continue the cell construction.

The creation of an exact copy of the organelle requires

to be able to recover the genome in the exact order that it

was sent. So the result of pulling the configuration string

must be the obtention of the same genome, that has been

previously introduced. Our solution to this problem is to

virtually create a shift register following the path used for

the cell shape creation, and to traverse it in both directions.

For a more detailed description of the THESEUS mech-

anism, including cell’s construction, self-inspection, repli-

cation, and hardware implementation, please refer to [17].

3.3 Dynamic Routing

Ontogenetic processes, such as self-replicating mecha-

nisms described in the previous section, require the abil-

ity of creating paths at runtime, in order to connect newly

created cells. Epigenetic systems such as growing neural

networks would also need to build connectivity during the

lifetime of the artificial network. Therefore the ubichip has

to propose a hardware mechanism to handle this kind of dy-

namic routing.

Considering the typical high silicon overhead due to

routing matrices, specially high for dynamic routing, we

chose a solution requiring the less amount of logic as pos-

sible, while being flexible enough to deal with the chang-

ing topology of the network. One of the simplest physi-

cal realization consists in the wormhole routing concept [8].

However the hardware overhead of this kind of algorithms

is not suitable for the granularity of the reconfigurable array.

Therefore, we will implement a dynamic routing algorithm,

by improving the routing implemented in the POEtic chip

[15]. The risk of congestion will be reduced by means of

two features. First, the new algorithm will better exploit

the existing paths, and second an 8-neighborhood will al-

low a dramatic reduction of congestion risk compared to

the amount of logic required. And finally, while in POEtic

the circuit execution was frozen during a routing process,

in the ubichip the creation of a new path will let the system

run without interruption.

The basic idea of the algorithm is to construct paths be-

tween sources and targets by dynamically configuring mul-

tiplexers, and by letting the data follow the same path for

each pair of source and target. A phase of path creation ex-

ecutes a breadth-first search distributed algorithm, looking

for the shortest path. Sources and targets can decide to con-

nect to their corresponding unit at any time by launching a

routing process.

Special routing units will be implemented in hardware.

They will be composed of the multiplexers needed to route

the data, the corresponding registers required to store the

multiplexers configuration, and a finite state machine to

handle the routing processes. The routing units will be con-

nected to the logic units in order to allow the cells (neurons

for instance) to manage the creation of new connections.

A routing process, dealing the construction of a new

path, is decomposed in 5 main phases: (1) When a source or

a target wants to initiate a connection, it activates a global

signal. If different logic units start such a process at the

same time, priority is given to the most bottom-left unit.

(2) After a master is identified, it sends serially its ID. This

ID will be stored in a LUT of the logic unit, exploiting the

configuration bits shift register. (3)At the end of the address

broadcasting, all sources and targets have compared the data

with their own address and know if they are involved in the

current process. (4)A breadth-first search algorithm then

searches for the shortest path. (5) When the target is found,

a backward signal allows for the configuration of the multi-

plexers present on the path, and the process ends up with a

new path, allowing the newly connected logic unit to share

information.

3.4 Scalability Issues

One of the most salient features of complex systems is

the dense interaction scheme established between their con-

stituent components. This implies that special attention has

to be paid to the scalability properties of any hardware plat-

form envisioned for the efficient implementation of com-

plex systems. That is, the main figures of merit of the plat-

form should be kept irrespective of the number of physical

units (chips in the case of the Perplexus platform) that con-

stitute it and also irrespective of the partitioning done (i.e.,

the number of components that are simulated on a single

Second NASA/ESA Conference on Adaptive Hardware and Systems(AHS 2007)
0-7695-2866-X/07 $25.00  © 2007



physical unit).

If one considers the neural application described in sub-

section 3.1, it means that if 100 neurons could be physically

mapped in a single chip (a number that still has to be veri-

fied), the number of I/O pins required per chip would exceed

20000, far more than can be attained with any foreseeable

packaging technology. One of the major hardware issues to

be faced by the Perplexus project is related to the scalability

of the basic building blocks (ubichips) that will constitute

the Perplexus platform. Among the different approaches

that may provide a feasible solution for the I/O scalability

problem it is foreseen to analyse and adapt the principles in-

volved in the Address Event Representation (AER) scheme,

initially proposed in [14] and developed later in [2]. This

communication mechanism was developed in order to over-

come the bottlenecks that appear when information has to

be exchanged within a system composed of massively inter-

connected components. The principle of the AER scheme

consists in converting an ordered sequence of events (spikes

in the case of a spiking neural network) into a sequence

of addresses that encode the source of the event and that

are broadcasted to the rest of the system. In the receiver

side, the sequence of addresses are converted again into a

sequence of events that are transferred to the corresponding

destinations.

The AER communication scheme can be easily adapted

to the computational needs of a distributed system such as

that constituted by the Perplexus platform, where a ubidule

can contain more than one ubichip. A global bus containing

the address of the source components that generate events

at a given time is shared between all the ubichips. Every

ubichip contains an encoder unit that converts the events

generated by the components contained in it into addresses

to be placed in the shared bus, and also a decoder unit that

translates the addresses present in the shared bus into events

for its implemented components. The arbitration for the ac-

cess to the bus can be established in a sequential way be-

tween all the ubichips present in the system. In this way, ev-

ery ubichip will indicate to the next one by means of a spe-

cific signal, start frame, that it is accessing the shared bus

and broadcasting the addresses corresponding to the events

generated by its components. Another signal, end frame,

would indicate that its access to the bus has finished and

that the next ubichip is granted to access the bus. When

the last ubichip generates the end frame signal, the first one

will activate a global signal, called frame update, so that

all the components included in all the ubichips may update

their outputs from the inputs received in the current simu-

lation frame. Figure 4 represents the system organisation

for the implementation of this communication scheme. The

boxes labeled as C in the figure are the components that cor-

respond to the PEs introduced in the subsection 3.1, which

are implemented in the different ubichips.

C C C C C

C C C C C

C C C C C

C C C C C

C C C C C

Ubichip 1

C C C C C

C C C C C

C C C C C

C C C C C

C C C C C

C C C C CC C C C C

C C C C CC C C C C

C C C C CC C C C C

C C C C CC C C C C

C C C C CC C C C C

Ubichip 1

C C C C C

C C C C C

C C C C C

C C C C C

C C C C C

Ubichip 2

C C C C C

C C C C C

C C C C C

C C C C C

C C C C C

C C C C CC C C C C

C C C C CC C C C C

C C C C CC C C C C

C C C C CC C C C C

C C C C CC C C C C

Ubichip 2

C C C C C

C C C C C

C C C C C

C C C C C

C C C C C

Ubichip N

C C C C C

C C C C C

C C C C C

C C C C C

C C C C C

C C C C CC C C C C

C C C C CC C C C C

C C C C CC C C C C

C C C C CC C C C C

C C C C CC C C C C

Ubichip N

start_frame

end_frame

frame_update

address bus

Figure 4. AER implementation.

It is worth noting that, because it basically consists on a

multiplexed broadcasting of information, this communica-

tion scheme is valid either for a single-ubichip per ubidule

scenario or for a multi-ubichip per ubidule scenario. Fur-

thermore, this communication scheme may provide enough

bandwidth for the communication needs of the applications

considered in the Perplexus project, even in the single-

ubichip per ubidule scenario and a wireless physical link

between ubidules. If we consider the neural application (the

most restrictive one in terms of capacity and bandwidth),

and assuming 100 neurons are implemented in each ubichip

and a 54 Mbits/second wireless link, this would permit a

neuron firing rate of around 300 spikes/second, something

that is in line with the simulation experiments already per-

formed for the application [3]. In the case of a multi-ubichip

per ubidule scenario with a shared bus running at 10 MHz (a

quite conservative approach) this would imply a firing rate

of around 1000 spikes/second, far exceeding the application

needs.

Finally, it is also worth noting that this communication

scheme permits a local synchronous implementation of the

target functionality and an asynchronous information ex-

change, something that fits well with the scalability fea-

tures to be attained by the Perplexus platform. Addition-

ally, the proposed communication scheme permits to syn-

chronize the overall emulation of the target system in the

platform, a strict requirement in some applications like the

spiking neural network that is being considered within the

framework of the project.

4 Summary

In this paper we have introduced the ubichip, a custom

reconfigurable electronic device capable of implementing

bio-inspired hardware systems featuring growth, learning,

and evolution. We have also presented the architectural

and reconfigurability mechanisms that will allow an effi-

cient implementation of such systems. These mechanisms

are dynamic routing, distributed self-reconfiguration, and

a neural-friendly logic cell architecture, keeping in mind

Second NASA/ESA Conference on Adaptive Hardware and Systems(AHS 2007)
0-7695-2866-X/07 $25.00  © 2007



the scalability issues that rise in the implementation of such

type of complex systems.

This ubichip will constitute the core of the ubidule, the

supporting platform of the Perplexus project [12], which

goal is to develop a scalable hardware platform made of

custom bio-inspired reconfigurable devices for simulating

large-scale complex systems. This ubichip will be associ-

ated to sensory elements, actuators, and wireless communi-

cation capabilities.

Acknowledgements

This project is funded by the Future and Emerging Tech-

nologies programme IST-STREP of the European Commu-

nity, under grant IST-034632 (PERPLEXUS). The informa-

tion provided is the sole responsibility of the authors and

does not reflect the Community’s opinion. The Community

is not responsible for any use that might be made of data

appearing in this publication.

References

[1] W. Barker, D. M. Halliday, Y. Thoma, E. Sanchez, G. Tem-

pesti, and A. M. Tyrrell. Fault tolerance using dynamic re-

configuration on the poetic tissue. IEEE Transactions in

Evolutionary Computation.

[2] K. Boahen. Point to point connetivity between neuromor-

phic chips using address events. IEEE Trans. on Circuits

and Systems II, 47(5):416–434, 2000.

[3] J. Iglesias. Emergence of Oriented Circuits driven by Synap-

tic Pruning associated with Spike-Timing-Dependent Plas-

ticity (STDP). Phd thesis, University Grenoble I Joseph

Fourier, University of Lausanne, 2005.

[4] J. Iglesias, J. Eriksson, F. Grize, M. Tomassini, and A. Villa.

Dynamics of pruning in simulated large-scale spiking neural

networks. Biosystems, 79(1-3):11–20, 2005.

[5] J. Iglesias, J. Eriksson, B. Pardo, M. Tomassini, and A. Villa.

Emergence of oriented cell assemblies with spike-timing-

dependent plasticity. In W. Duch et al., editor, Artificial Neu-

ral Networks: Biological Inspirations, LNCS, volume 3693,

pages 11–20. Springer-Verlag, 2005.

[6] D. Mange, M. Sipper, A. Stauffer, and G. Tempesti. Toward

robust integrated circuits: The embryonics approach. Pro-

ceedings of the IEEE, 88(4):516–540, April 2000.

[7] D. Mange, A. Stauffer, E. Petraglio, and G. Tempesti. Self-

replicating loop with universal construction. Physica D,

191(1-2):178–192, apr 2004.

[8] L. M. Ni and P. K. McKinley. A survey of wormhole rout-

ing techniques in direct networks. Computer, 26(2):62–76,

1993.

[9] D. Roggen, S. Hofmann, Y. Thoma, and D. Floreano. Hard-

ware spiking neural network with run-time reconfigurable

connectivity. In 5th NASA / DoD Workshop on Evolvable

Hardware (EH 2003), pages 199–208. IEEE Computer So-

ciety, 2003.

[10] D. Roggen, Y. Thoma, and E. Sanchez. An evolving and

developing cellular electronic circuit. In J. Pollack et al.,

editors, Proc. Ninth International Conference on the Simu-

lation and Synthesis of Living Systems (ALIFE9), pages 33–

38, Cambridge, Massachusetts, USA, 2004. The MIT Press.

[11] J. Rossier, Y. Thoma, P.-A. Mudry, and G. Tempesti. MOVE

processors that self-replicate and differentiate. In A. Ijspeert

et al., editors, Proc. Biologically Inspired Approaches to Ad-

vanced Information Technology (BioADIT 2006), number

3853 in LNCS, pages 160–175, Berlin Heidelberg, 2006.

Springer-Verlag.

[12] E. Sanchez, A. Perez-Uribe, A. Upegui, Y. Thoma,

J. Moreno, A. Villa, H. Volken, A. Napieralski, G. Sassatelli,

and E. Lavarec. PERPLEXUS: Pervasive computing frame-

work for modeling complex virtually-unbounded systems.

In AHS 2007 - Proceedings of the 2nd NASA/ESA Confer-

ence on Adaptive Hardware and Systems, 2007.

[13] M. Sipper, E. Sanchez, D. Mange, M. Tomassini, A. Perez-

Uribe, and A. Stauffer. A phylogenetic, ontogenetic, and

epigenetic view of bio-inspired hardware systems. IEEE

Transactions on Evolutionary Computation, 1(1):83–97,

1997.

[14] M. Sivilotti. Wiring Considerations in Analog VLSI Systems

With Applications to Field Programmable Networks. Phd

thesis, California Institute of Technology, Passadena, 1991.

[15] Y. Thoma, E. Sanchez, J. M. M. Arostegui, and G. Tem-

pesti. A dynamic routing algorithm for a bio-inspired re-

configurable circuit. In Field-Programmable Logic and Ap-

plications, LNCS, volume 2778, pages 681–690. Springer-

Verlag, 2003.

[16] Y. Thoma, G. Tempesti, E. Sanchez, and J. M. M. Arostegui.

POEtic: an electronic tissue for bio-inspired cellular appli-

cations. Biosystems, 76(1-3):191–200, 2004.

[17] Y. Thoma, A. Upegui, A. Perez-Uribe, and E. Sanchez. Self-

replication mechanism by means of self-reconfiguration. In

Workshop Procedings of the International Conference on

Architecture of Computing Systems 2007 (ARCS’07). VDE

Verlag, Berlin, 2007.

[18] A. Upegui, C. A. Peña Reyes, and E. Sanchez. An FPGA

platform for on-line topology exploration of spiking neural

networks. Microprocessors and Microsystems, 29(5):211–

223, 2005.

Second NASA/ESA Conference on Adaptive Hardware and Systems(AHS 2007)
0-7695-2866-X/07 $25.00  © 2007


