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Abstract— The ubichip is a bio-inspired reconfigurable circuit
developed in the framework of the european project Perplexus.
The ubichip offers special reconfigurability capabilities, being
the dynamic routing one of them. This paper describes how to
exploit the dynamic routing capabilities of the ubichip in order
to implement synaptogenetic neural networks. We present two
techniques for dynamically generating the network topology, we
describe their implementation in the ubichip, and we analyse
the resulting topology. This work constitutes a first step toward
neural circuits exhibiting more realistic neural plasticity features.

I. INTRODUCTION

The Perplexus project [1] aims to develop a scalable

hardware platform made of custom reconfigurable devices

endowed with bio-inspired capabilities. This platform will

enable the simulation of large-scale complex systems and the

study of emergent complex behaviors in a virtually unbounded

wireless network of computing modules. At the heart of these

computing modules, we will use a ubichip [2], a custom

reconfigurable electronic device capable of implementing bio-

inspired mechanisms such as growth, learning, and evolution.

These bio-inspired mechanisms will be possible thanks to

reconfigurability mechanisms like dynamic routing, distributed

self-reconfiguration, and a simplified connectivity. Such an

infrastructure will provide several advantages compared to

classical software simulations: speed-up, an inherent real-time

interaction with the environment, self-organization capabili-

ties, simulation in the presence of uncertainty, and distributed

multi-scale simulations.

The ubichip offers thus an interesting set of reconfigurability

mechanisms for supporting networks featuring different types

of neural plasticity. Different approaches have been proposed

for automatically generating neural networks’ topologies. Evo-

lutionary artificial networks [3], for instance, generate a net-

work from a description contained in a genome. Each link

of the network is somehow coded in the genome. Being

an effective approach for computing purposes, this approach

results unplausible in biological neural systems given that

the human brain features around 1014 connections, far more

than can be coded in the 3 × 109 nucleotides contained in

the human ADN. Another common approach for generating

network’s topologies is growing and pruning algorithms [4].

Such algorithms add or remove neurons to or from a network,

according to its computing or generalization capabilities. This

approach results also useful for computing purposes but it is

not biologically plausible given the topological dependency on

a specific task performance.

Ontogenetic (or developmental) neural models arise as an-

other approach for building neural networks. From some initial

construction rules and some initial conditions, the network

is incrementally built under a constant interaction with the

environment. In [5], for instance, Cangelosi uses a genotype

for encoding the construction rules of a neural network. This

approach results more biologically plausible given the undirect

correlation between the individual’s genotype and phenotype.

An individuals phenotype is not directly derived from its

genotype, but it is also influenced by the environment stimuli

during the individual’s life-time. This phenotypic development

is also driven by physical constraints that allow to bound the

brain’s size, the number of dendrites per neuron, an axon’s

length, and the resulting neural structure. Physical constraints

are very rarely taken into account by incremental network

building models.

Unlike most of the artificial neural networks used for com-

puting purposes, brain network’s topology exhibits a quite in-

trincated, but still well organizing pattern. How such a network

with billions of neurons interacting through electric spikes

manage to exhibit higher level and quite complicated processes

such as learning and consciousness remains a mystery for

scientists. However, neuroscientists have found several clues

about the underlying mechanisms that allows such higher level

processes to arise. One of these clues suggests that network’s

topology plays a fundamental role in this process [6], making

brain’s topology and plasticity one of the key phenomena to

drawn inspiration from in order to model and understand such

type of systems.

This paper presents two approaches for exploiting the

ubichip’s reconfigurable capabilities, more specifically the

dynamic routing, in order to implement synaptogenetic ar-

tificial neural circuits. The synaptogenetic model presented

in this paper allows a network to be developed in function

of the interaction with the environment, more precisely, in

function of the input’s stimuli. We drawn inspiration from

some biological processes in order to propose our configurable

circuit architecture. It must be noted that this paper focuses

on the network topology generation and not on its ability to

solve a task. To the best of our knowledge, this is the first

reported neural circuit featuring synaptic plasticity.

This paper is structured as follows: In sections II and III
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we introduce the ubichip’s architecture, and we describe

the dynamic routing mechanisms offered by it. Section IV

gives a short introduction to complex systems’ topologies and

neural circuits. Then, section V describes our two models for

generating neural topologies: a random and an activity-driven

approach. Section VI describes the implemented networks and

the results obtained from them. Finally, section VII concludes.

II. UBICHIP

The ubichip is a custom reconfigurable electronic device

capable of implementing bio-inspired mechanisms such as

growth, learning, and evolution. These bio-inspired mecha-

nisms are possible thanks to reconfigurability mechanisms

like dynamic routing, distributed self-reconfiguration, and a

simplified connectivity.

Recent work in this field is the POEtic tissue [7], a re-

configurable hardware platform for rapidly prototyping bio-

inspired systems that employs POE principles [8], which has

been developed in the framework of the European project PO-

Etic. The POEtic chip has been specifically designed to ease

the development of bio-inspired applications. The limitations

exhibited by the POEtic tissue suggest several architectural and

configurability features to be improved. These improvements

may lead us to a reconfigurable platform better suited for

supporting the bio-inspired principles that we want our devices

to mimic.

The ubichip is mainly composed of three reconfigurable

layers. The first one is an array of ubicells, the reconfigurable

logic elements used for computation purposes. A ubicell is

composed of four 4-input look-up tables (LUT) and four flip-

flops (DFFs). These ubicells can be configured in different

modes like counter, FSM, shift-register, 64-bit LFSR, adder,

subtractor, etc. An ubicell can also implement a simple 4-

bit processing element being part of a SIMD multiprocessing

platform, and n ubicells can be merged to create a 4n-bit

processor. In this last mode, an on-chip centralized sequencer

is responsible of decoding the instructions for the multi-

processor management.

The second layer contains dynamic routing units that permit

the ubicells to dynamically connect to any part of the circuit.

Based on identifiers and a concept of sources and targets

trying to reach a correspondent with the same ID, it looks

quite similar to the system described in [9], while having

enhancements on different aspects. It will be described in more

detail in section III.

Finally, the third layer is made of self-replicating units that

allow part of the circuit to self-replicate somewhere else on the

chip, without any external intervention. This truly new feature

can be very useful for cellular systems such as neural networks

with changing topologies. A neuron could for instance decide

to self-replicate if it has a high level of activation, or die by

self-destruction if it is unused, in order to leave resources for

another neuron. More details about this mechanism can be

found in [10].

These three layers are interconnected for allowing the

ubicell layer to control the two top layers. The ubicell layer can

Ubicell Ubicell

Ubicell Ubicell

SR 

unit

DR

unit

Fig. 1. Macrocell architecture

thus implement a circuit able to control the dynamic routing

and the self-replication layers. For this, we grouped units from

the three different layers for forming what we call a macrocell.

A macrocell contains thus four ubicells connected to a routing

unit and a self-reconfiguration unit as described in the schema

of figure 1.

Because of the scope of this paper, we will focus on

the dynamic routing layer description, we will describe its

implementation, its features, and its utilisation.

III. DYNAMIC ROUTING

Growing and developing cellular systems require the ability

of creating and destroying paths at runtime, in order to connect

newly created cells. Epigenetic systems such as growing neural

networks would also need to build connectivity during the

lifetime of the network. For this purpose, the ubichip provides

hardware mechanisms to handle such dynamic topologies.

Considering the typical high silicon overhead due to routing

matrices, specially high for dynamic routing, we chose a

solution requiring the less amount of logic as possible, while

being flexible enough to deal with the changing topology of

the network. One of the simplest physical realization consists

in the wormhole routing concept [11]. However, the hardware

overhead of this kind of algorithms is not suitable for the

granularity of the reconfigurable array. Therefore, we will

implement a dynamic routing algorithm, by improving the

routing implemented in the POEtic chip [12]. The risk of

congestion will be reduced by means of four features:

1) The new algorithm will better exploit the existing paths

by reusing the created paths instead of fully routing each

signal independently from the source to the target.

2) An 8-neighborhood will allow a dramatic reduction

of congestion risk compared to the amount of logic

required.

3) Underlying ubicells can trigger a path destruction, in

order to remove unused connections.
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4) Ubicells can also modify the address of routing units, in

order to reconnect to other units different from the one

initially specified.

And finally, while in POEtic the circuit execution was frozen

during a routing process, in the ubichip the creation of a new

path will let the system run without interruption.

The basic idea of the routing algorithm is to construct

paths between sources and targets by dynamically configuring

multiplexers, and by letting the data follow the same path

for each pair of source and target. A phase of path creation

executes a breadth-first search distributed algorithm, looking

for the shortest path. Sources and targets can decide to connect

to their corresponding unit at any time by launching a routing

process. Unlike the POEtic chip, where the system structure

was predefined and the dynamic aspect was only present in

the network creation, the ubichip allows to destroy paths and

reconnect to different cells, making dynamic the structure

definition itself.

Special routing units are implemented in hardware. They

are composed of the multiplexers needed for data routing,

the corresponding registers required to store the multiplexers

configuration, and a finite state machine to handle the routing

processes. The routing units are connected to the logic units

in order to allow the underlying implemented system (neurons

for instance) to manage the creation of new connections.

A routing process, dealing with the construction of a new

path, is decomposed in 5 main phases:

1) When a source or a target initiates a connection, it

activates a global signal. If different logic units start

such a process at the same time, priority is given to the

most bottom-left unit.

2) After a master is identified, it sends serially its ID.

3) At the end of the address broadcasting, all sources and

targets have compared the data with their own address

and know if they are involved in the current process.

4) A breadth-first search algorithm then searches for the

shortest path.

5) When the target is found, a backward signal allows for

the configuration of the multiplexers present on the path,

and the process ends up with a new path.

These dynamic routing mechanisms, along with the com-

putational capabilities offered by the ubicells, will allow us to

tackle the modeling of neural circuits exhibiting intricate and

dynamic topologies.

IV. COMPLEX SYSTEMS AND NEURAL CIRCUITS

Mammals’ brain is a complex system composed of millions

of neurons interconnected by an intrincated network. The

topology of such network and the developing mechanisms that

allows to form it, remain a challenging study field for neuro-

scientists. Several studies have attempted to find characteristic

patterns in such connectivity in order to model these neural

circuits. These studies have found that neural interconnectivity

is neither completely regular nor fully random, but it exhibits

an intricate organization [13].

Complex systems are systems composed of a set of parts

that exhibit behavioral properties which are not obvious to

predict from the behavioral description of the forming parts

[14]. Complex systems are characterized by emerging behav-

iors, non-obvious and rich interactions among parts, a hierar-

chical multi-scale nature, and in most cases the system itself

evolves over time. The increasing interest in understanding

and modeling such systems is because of their abundance on

real life. Some examples of complex systems are multi-cellular

organisms, energy distribution infrastructures, social networks,

economics, climate, and of course, the brain.

A very important aspect on these systems is their topology:

the way in which the parts or nodes are interconnected. The

simplest topology used for modeling complex systems is a

regular array, where each node is connected to neighbor nodes

forming a n-dimensional regular grid. Cellular automata are a

good example for these type of systems: an automaton’s next

state is determined by its own and its surrounding neighbors’

states.

Another common modeling approach is random network

structures. Nodes are randomly linked, independently of their

positions or their previous connections. Some examples of

such models are random boolean networks and echo state

networks, which are well known for exhibiting very interesting

dynamical properties. For a long time, they have been used

as models for several real complex systems. The degree

distribution (the distribution of the number of connections per

node) of random networks exhibit a Poisson distribution.

Somewhere between these regular and random networks,

we find the so-called small world networks [14]. A small

world topology is characterized by connections with neighbor

nodes mixed with a some degree of randomness, exhibiting a

high degree of local clusterization. Small world networks are

mainly characterized by the short path that connects every two

nodes, and have been shown to be very robust when erasing

nodes. The best known example of a small world network is

the Milgram’s experiment [15], which concluded that every

two persons in the world are connected to each other by a

maximum of six social links.

Another type of network is the scale-free network. These

networks posses the particular characteristic of exhibiting a

power law degree distribution. This distribution implies the

existence of hubs in the network. These hubs are highly

connected nodes that always allow to facilitate short paths

among nodes. These networks remain as robust as the standard

small world network when the removed node is not a hub.

However, when the removed node is a hub the network

connectivity gets very affected. A good example of this type

of network are the flight connections: the general impact on

flight connections for closing the airport of Paris (a hub) is

not comparable to that of Geneva (a node).

Recent studies have concluded that neural circuits exhibit

small world connectionism [13]. In part, this explains the brain

robustness in presence of neural death. Additionally, the brain

structure exhibits a constant plasticity, that implies that brain’s

topology is not static, but dynamic. Neurons and synapses
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are constantly being created and destroyed at time scales of

minutes or hours. During early mamalian development this

plasticity is very high, for achieving a certain stability in the

adult stages. However, neural and synaptic birth and death

remain active during the whole individual’s life-time.

V. SYNAPTOGENETIC HARDWARE MODEL

The ubichip arises thus as a promising hardware sub-

strate for implementing changing-topology electronic net-

works, more precisely in our case, synaptogenetic artificial

neural networks. Our model considers, in a first stage, the

initial existence of a set of unconnected 2-input neurons,

where dendrites (inputs) and axons (outputs) are connected to

dynamic routing units which are previously configured to act

as targets and sources respectively. The connectivity pattern

will be further generated during the neural network life-time.

Since in this work we focus on network’s topology genera-

tion, and not in the ability of such network for solving a task,

we use a very simplified neuron model whose implementation

on the ubichip requires only four macrocells. The neuron

model is defined by a stochastic activation function y =
f(i1 + i2) where, i1 and i2 are the two inputs of the neuron,

and f(x) is an activation function that if x = 2, f(x) = 1;

if x = 0, f(x) = 0; and if x = 1, f(x) = 1 with a

probability of 50% and f(x) = 0 otherwise. In other words,

if both inputs are active the neuron fires, if no input is active

the neuron does not fire, and if a single input is active the

neuron has a probability of 50% of firing. This stochastic

function is easily implemented in the ubichip thanks to the

LFSR configuration mode of the ubicell. Figure 2 shows a

screenshot of the dynamic routing layer in the UbiManager

design tool [16]. In this screenshot we can identify four routing

units: the two top units are configured as targets and act as the

neuron’s dendrites, the bottom left unit is configured as source

and acts as the neuron’s axon, and the bottom right unit is not

used.

An important aspect to consider in the network generation

model, is the eventual impossibility of creating a connection

between two existing nodes because of routing congestion.

Fig. 2. Inputs and output of a neuron connected to dynamic routing units

More than a limitation of the implemented model, it consti-

tutes an interesting feature. Physical routing constraints are

present in both: biological and our artificial network, and this

similarity will certainly make, in both cases, more likely to

create connections between close neurons than between remote

neurons, generating specific clustering patterns. However, the

size of the models presented in this paper are not still large

enough for exhibiting such clustering.

In this paper we present two approaches for generating

the network’s topology. The first is a random process where

each dendrite attempts with a given probability to connect

to a random axon, and the second one is an activity-driven

approach where the probabilities of an axon to get connected

are function of the neuron’s activity.

A. Random Synaptogenesis

As described in section III a connection between a source

and a target is created when both have the same address, and

one of them triggers a process of dynamic routing. The order

of creating a connection comes from the ubicell layer, which

is the layer that contains the computation logic. The ubicell

layer can also modify the address assigned to a routing unit.

For implementing the random synaptogenesis network a set

of unconnected neurons is initially configured in the ubichip.

Each neuron has a unique axon address and dendrites’ address

can be randomly modified at each clock cycle with a certain

probability. Each dendrite has also a certain probability to

attempt a connection (create a synapse) with the axon corre-

sponding to its current address. If the synapse is successfully

created, it remains and the dendrite does not attempt to connect

any more. If it is not successful it continues retrying new

connections until a synapse is created.

There are several reasons for a synapse creation to not being

successful. The first is the case where another dendrite is trying

to connect; the creation of a path requires several clock cycles

and only one can be done at a time. The second reason is

the non-existence of an axon with such address; addresses are

coded in 8 bits and if the number of neurons is less than 28,

one can attempt connections to non-existing axons. The third

reason is routing congestion; at the end of the synaptogenetic

process it can happen that the created network does not allow

the connection between two existing nodes because of the

unavailability of routing paths.

B. Activity-Driven Synaptogenesis

The principle behind the activity-driven synaptogenetic ap-

proach is the fact that more active neurons are more likely

to get connected that less active neurons. This principle is

inspired in a phenomenon called ocular dominance plastic-

ity [17]. This phenomenon has been observed in an experiment

called monocular deprivation, where a single eye of a kitten

is occluded during a critical period of early life. It has been

observed that synaptic connections are mainly connected to

the non-occluded eye, and the occluded eye loses ends up

weakly connected to cortical cells. It has been also observed

that when uncovering the occluded eye the cortical circuit is
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reconnected in order to compensate the dominance of the non-

occluded eye. Of course, the recovery is not complete and it

is possible only if the uncovering is done before a certain age.

Our implementation aims to inspire from this principle for

creating the synaptogenetic network. The network has two

inputs which may be stimulated with different firing rates.

The most excited neurons will have more chances to get

connected than the less excited neurons. On the same way,

the neurons that get connected to the input neurons will be

activated by them and will increase also their possibility of

getting connected. In this paper we present a first stage of

the complete implementation, where we excite both inputs

at different firing rates and we analyse the network topology

generated from it.

The implementation on the ubichip uses the same neuron

model described before, but with a different synaptogenetic

process. A set of unconnected neurons is initially configured

in the ubichip. Each dendrite has a unique address. Axons’

address can be randomly modified, with a certain probability,

at each firing of its respective neuron. The more a neuron fires,

the higher will be the probability of modifying its address.

And the more an axon changes its address, more probabilities

it will have to get connected to different dendrites. As in

the random network, dendrites are constantly attempting to

get connected to a constant address, and if the synapse is

successfully created, the connection remains and the dendrite

does not attempt connections any more.

VI. EXPERIMENTAL SETUP AND RESULTS

We implemented both types of synaptogenesis on the

ubichip architecture using the UbiManager design tool [16].

In both cases we implemented an array of 62 neurons (8× 8
leaving some place for generating the input stimuli) using an

ubichip description of 32×32 ubicells, the equivalent of 16×16
macrocells.

A. Random synaptogenesis

In the case of the random synaptogenesis, each dendrite

at every clock cycle has a probability of 6.25% (1/16) of

attempting a connection and a probability of 37.5% (6/16)

of attempting to modify its current address. These parameters

where arbitrarily chosen.

After a certain number of clock cycles, a mean of 6940

with a standard deviation of 458, the whole network is created,

exhibiting the degree distribution illustrated in figure 3. This

figure corresponds to the average distribution on 10 runs. In

the degree distribution, each column shows the number of

neurons featuring a number of x connections. One can see,

from the figure, that every neuron has at least 2 connections

since each neuron has 2 input dendrites that are all connected

at the end, and an axons connections can range from 0

to 8 connections. One can also conclude from the figure

that the degree distribution roughly approaches to a Poisson

distribution, which is the characteristic degree distribution of

random networks [14].
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Fig. 3. Degree distribution of the random synaptogenesis

Figure 4 shows an example of a resulting random network

viewed in the ubimanager. For the sake of clarity, the network

in the figure is smaller than the network reported in this paper.

It has 16 neurons (arranged 4 × 4), without specific input

neurons.

In figure 5, we can also observe an example of one of the

generated network topologies. The observed network structure

correspond to a standard random network.

B. Activity-driven synaptogenesis

In the activity-driven synaptogenesis, each dendrite at each

clock cycle has also a probability of 6.25% of attempting a

connection, and each axon has a probability of attempting to

modify its address of 50% at each axon firing. Two neurons

are used as input neurons, they receive an external stimuli

(generated by a counter and some extra circuitry) that mimics

the activity of external sensors (or eyes in the case of a kitten).

The more excited input neuron receives a stimulus every 16

clock cycles through one dendrite and the second dendrite

receives no stimulus. The less excited input neuron receives a

Fig. 4. Example of a randomly generated network 4× 4 on the ubichip
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Fig. 5. Random synaptogenesis topology

stimulus every 256 clock cycles through one dendrite and the

second dendrite receives no stimulus.

After a number of clock cycles the complete network is

created, the mean number of clock cycles being 29482 with

a standard deviation of 3415. An example of the obtained

network is depicted in figure 6. The input neurons of the

network are in the bottom center of the figure.

The degree distribution of the created network is depicted

in figure 7. This figure corresponds to the average distribution

of 14 runs. This degree distribution suggests at first view a

Power law, which is the characteristic distribution of scale-

free networks [14]. One can intuitively explain the structure

of this network as some few hubs being highly connected,

Fig. 6. Activity-driven network on the ubichip

which should be the more excited input neuron and the first

neurons getting connected to it, and most of the neurons

weakly connected. However, we stongly belive that this Power

law distribution is achieved because of the reduced number

of links per node, and that increasing the connectivity of the

network we will end up with a Poisson degree distribution.

This hipotesis is very important because real neural topologies

exhibit this type of degree distribution, and it is supported by

the work presented in [18], where they have shown that the

random adding of links to a scale-free network results in a

Poisson degree distribution. Proving this hipotesis is the main

raison for pursuing our research toward more highly connected

networks.

The activity-driven synaptogenesis requires much more

clock cycles than the random synaptogenesis approach. This

difference is because the random approach allows any axon

to get connected at any time since the beginning, and in the

activity-driven approach, only stimulated neurons can have a

valid axon address, so at the beginning only the two input

neurons can get connected.

In figure 8, we can observe an example of one of the

network topology generated by the activity-driven synaptoge-

nesis. In this network, we can observe some highly connected

nodes or hubs. For instance, the node 6 in the figure is the more

excited of the input neurons. It has 11 outputs and the two

inputs (not shown in the figure) come from external inputs. We

can also identify the node 16, which was initially stimulated

by the node 6, acting as a node with 11 connections. On the

other hand, it can be identified many nodes (more than in the

random network) featuring a low connectivity with only 2 or

3 connections.

Concerning the two different stimulation rates, we can also

identify in the figure 8 the differences between the networks

created from each input. The network inputs are the nodes 6

and 3, being respectively the highly and the lowly stimulated

inputs. Figure 9 shows the network created from the node 6,

the highly stimulated node. The figure only shows the nodes
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Fig. 7. Degree distribution of the activity-driven synaptogenesis
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Fig. 8. Activity-driven synaptogenesis topology

that can be attained by a maximum of two links from the input

neuron. This input can attain 29 neurons through a maximum

of 2-edges paths; this corresponds to almost the half of the

nodes of the full network. Figure 10 shows the network created

from the node 3, the poorly stimulated node. In the same two

steps it can only attain 9 nodes, and only 2 in a singly step.

This second input is less connected to the network and, as in

the experiment with the kitten described in subsection V-B,

the network connectivity is more developed toward the more

stimulated input (the non-occluded eye) than toward the less

stimulated one (the occluded eye).

VII. CONCLUSIONS AND FUTURE WORK

This paper presented two models, with their respective

implementation, for implementing synaptogenetic neural net-

works by exploiting the dynamic routing capabilities of the

ubichip. The networks obtained by the activity-driven model,

exhibits complex topologies featuring some similarities with

real neural topologies, i.e. being neither fully random nor

completely regular. This structure is the result not only of

the activity-driven plasticity, but of the physical constraints

imposed by the substrate (ubichip), in a similar way to brain-

like structure development in organisms. The possibility of

mixing some level of randomness with some level of organi-

zation should drive future efforts in this research line.

The dynamic routing mechanisms offered by the ubichip

represent an important implementation tool for designing

neural circuits exhibiting some level of synaptic plasticity.

Future work will exploit the capability of pruning existing

synapses, which will increase the richness of the phenomenon

being modeled. This will also permit to go further on the

ocular occlusion experiment, where a recovery of the occluded

eye has been observed when uncovering it.

Future work will also exploit other reconfigurable capa-

bilities of the ubichip like self-replication, which will allow
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to implement neurogenetic circuits. In this case an initial

neuron with self-replicating capabilities will be able to fill

the available ubicells on the circuit with a number of neurons.

These neurons will further need to create connections between

them, allowing to think about more complete models of

neurogenetic and synaptogenetic neural circuits.
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